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TECHNICAL MEMORANDUM

A METHODOLOGY FOR COMMONALITY ANALYSIS, WITH APPLICATIONS

TO SELECTED SPACE STATION SYSTEMS

I. INTRODUCTION

A. General

The life-cycle cost of systems is typically comprised of four components:

research and development (R&D) cost, production cost, operation cost, and disposal

cost [1]. Because of the typically small production lot sizes and state-of-the-art

technology applications, the R&D costs are disproportionately large for aerospace

systems relative to commercial systems development programs. Commonality seeks to

reduce R&D costs by replacing duplicate R&D efforts on functionally similar system

components with a single development effort, thereby reducing R&D costs. Likewise,

commonality seeks to reduce production costs through larger production lot sizes, and

to reduce operations costs through increased standardization.

The R&D cost and the production cost, when summed, give the purchase cost

of a system. While production costs in general vary proportionately with the produc-

tion lot size, R&D costs are in general nonrecurring; they are incurred only once

whether the production lot size is one or one hundred. Generally, for space systems,

two common items may be purchased for 60 to 65 percent of the cost incurred when

purchasing two uniquely developed items which perform the same functions [2]. In

addition to purchase costs, operations costs can also be reduced through the applica-

tion of commonality - the Boeing Company developed a common cockpit for both its

757 and 767 airplanes based on the operations cost savings which the buyer would

realize as a result of reduced pilot training [3].

The cost saving potential of commonality in the space station program was

recognized in the early stages of the program. The conceptual design of the space

station included five modules: two laboratories, two living quarters, and a logistics

module. In a study described by Powell and Beam [4], a common module was defined

which could be outfitted to serve as a laboratory, living quarters, or a logistics
module. This commonality analysis was performed largely in trial and error fashion,

with engineering intuition providing the def_mition of commonality options. The cost

of each option was evaluated, and the option having the lowest cost became the

common module concept.

B. Background

Commonality analysis is a routine procedure during the early phases of the

system development cycle in aerospace programs. In most cases, the number of
commonality alternatives is quite small and all alternatives may be explored to deter-

mine the optimum. The 757/767 common cockpit is such an example - there are only

two alternatives: (1) develop a unique cockpit for each airplane or (2) develop a

common cockpit for both airplanes. However, there are cases such as the common

module study described above in which the number of alternatives is tremendous. In

these cases, it is not practical to examine all alternatives and an ad hoc approach

must be employed.



A lack of knowledge regarding a method for dealing with the large number of

commonality alternatives and a lack of understanding of both the economics of com-

monality and its evolution over the system development cycle have combined to make

"commonality" a hated word for many project managers. However, a recent study [2]
addressed the economic impacts of commonality. The research documented in this

report represents an initialattempt to attack the other two problems: (1) the scope
of commonality analysis in the various design phases, and (2) a method to cope with

the large number of commonality alternatives.

C. The Scope of Commonality Analysis

The role of commonality is basically one of establishing the set of requirements
which an item must satisfy from the systems standpoint rather than from the subsys-
tems or even lower standpoints. As such, the integration of commonality analysis
into the system development cycle is fairly straightforward; the results of commonality
analysis must track the overall evolution of design requirements in terms of both
schedule and detail. The objectives of commonality analysis evolve as the system

itself evolves. A commonality analysis performed during Conceptual Design differs
markedly from one performed during Detail Design. Early studies address the cost
effectiveness of commonality and its sensitivity to parametric variation. Follow-on
studies in later design phases address the commonality solution - what functions a
common item should include and where it should be used. Section V discusses in

detail the scope of commonality in each of the four phases of the system development
cycle.

D. Application of Cluster Analysis

In Section II, commonality analysis is characterized as a partitioning problem,
with the objective being to find the partition which minimizes cost. The cost in this
case is life cycle cost. Life cycle cost best quantifies the cost/performance tradeoff
implicit in commonality. While commonality decreases costs such as R&D, the physical
manifestations can be increased weight, volume, power consumption, or other system
variables. If these costs may be described by an objective function, clustering tech-
niques may be used to identify a partition which is optimum or near optimum. A

large number of cluster analysis algorithms are currently defined and in use. Section
III describes the selection of the best cluster analysis method for use in commonality

analysis.

Section IV presents the formulation of a cluster analysis-based methodology for
the performance of commonality analysis. Given a set of functionally similar items,
such as a set of water tanks of different sizes, cluster analysis may be employed to
specify whether any tanks are similar enough to be developed in common. Each item
is characterized in terms of its design specifications and required functions by an
attribute vector. Feasibility relations are used to define the attributes of a common
item in terms of its constituents; if the value of the objective function decreases from
the use of a common item instead of the constituent items, those items are clustered.

Once the clustering is completed, each cluster defines a common item. Since cluster-
ing techniques do not inherently guarantee generation of an optimum solution, suffi-
cient conditions which may be used in the verification of optimum solutions are

developed. These conditions are presented in Section IV. This commonality analysis

methodology is illustrated in three examples in Section V using space station program

design data.
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Finally, conclusions and recommenations are presented in Section VI.

II. DEFINITION OF THE COMMONALITY ANALYSIS PROBLEM

A. General

The general formulation of commonality is one in which a new entity AB results

from making item A common with item B. This new entity AB incorporates the func-

tions required of both A and B. For example, if pump A must operate under high

pressure and pump B must provide a high flow rate, then a common pump AB must

operate under high pressure and/or provide high flow rates. By allowing the crea-
tion of new items incorporating the functions of any two or more items, any degree

of commonality is technically feasible within system performance constraints, and the

discriminator in feasibility is one of economy.

B. Economic Considerations of Commonality

The System Commonality Analysis Tool (SCAT) is a computer program previously
developed to aid in the evaluation of the cost impacts associated with the application
of commonality to spacecraft development programs [2]. In general, it is not
applicable to commonality analyses involving more than two items, but the program
does effectively quantify the cost and performance impacts associated with commonality
between two items. These economic relationships are reviewed subsequently and will
serve as a basis for quantifying the economic impacts of commonality in the methodology

to be developed.

The SCAT assesses the economic impact of commonality on the basis of Life
Cycle Cost (LCC). LCC is determined as a sum of the purchase cost - R&D plus
production - and operations cost:

LCC = C + C
p o

where C is purchase cost and C is operations cost. These costs are not discounted;
p o

discounting may be included by manually discounting the component costs of C and
P

Co . Retirement cost is assumed equal for all commonality alternatives and, thus, is

not included iiitl_e analysis. The purchase costs provide an accounting of the dif-

ferences between the R&D and production costs with various commonality alternatives.

Operations costs provide an accounting of differences in performance levels; differ-

ences in energy usage, weight, and maintenance costs impact operating costs rather

than purchase costs.

The study leading to the development of the SCAT identified ten attributes of
a hardware item which determine the cost effectiveness of commonality:

1. Quantity (QN)

2. Weight (WGT)

3



3. Volume (VOL)

4. Power Consumption (PWR)

5. Duty Cycle (DC)

6. Mean Time Between Failure (MTBF)

7. Mean Time To Repair (MTTR)

8. Maintenance Environment (ME)

9. Research and Development Cost (RDC)

10. First Item Production Cost (FPC).

While other attributes relating to an item's function are needed to establish technical

feasibility of a commonality alternative, these ten attributes are the principle con-
tributors to the economic feasibility. Each of these attributes can assume only non-

negative values.

The purchase cost impact of commonality is the result of eliminating duplicative

R&D efforts and of lowering unit production cost through larger production lot
quantities. For M items, the purchase cost is given as

M

P i=1
[RDC i + (Production Cost) i + (Launch Cost) i ]

where

(Production Cost) i = f(FPCi,QN i)

(Launch Cost) i = f(WGTi,QN i) •

Commonality affects operations costs by changes, within technical constraints, to
system performance variables. These changes result from the excess functionality of
common items and of the reduced number of spares required onboard. For M items,

the operations cost is given as:

M

(VC i + SPARVC i + EC i + SPROD i + STRANC i + REPC i + THERC i)

where

Volume Cost = VC i = f(VOLi,QN i)



Volume Cost of Spares = SPARVCi = f(VOL i) ,

Energy Cost = EC i = f(DCi,QNi,PWRi) ,

Production Cost of Spares = SPROD i = f(FPCi,QN i) ,

Launch Cost of Spares = STRANC i = f(WGTi,VOLi,MTTRi,MTBFi,DCi,QN i)

Replacement Cost = REPC i = f(MTTRi,MTBFi,DCi,QN i) ,

Thermal Cost = THERC i = f(DCi,QNi,PWR i)

All of the foregoing functions are strictly increasing over the domain of their respec-
tive variables. Two exceptions are the launch cost of spares and replacement cost;
they are strictly decreasing over the domain of MTBF and strictly increasing over the
domain of all other variables. A detailed derivation of these cost relationships is

given in the user's manual for the SCAT [5].

C. The Number of Commonality Alternatives

In a commonality analysis including two items A and B, there are two commonality
alternatives: (1) build both item A and item B, which is the "no commonality" alter-
native; and (2) build item AB to serve in the applications of former items A and B,
which is the "total commonality" option. This is the form of commonality analysis for
which the SCAT was developed [2]. When more than two items are included in a
commonality analysis, the number of commonality alternatives which must be evaluated

grows significantly. Consider a commonality analysis including three items A, B, and
C. The commonality alternatives which must be evaluated include:

(1) item A, item B, and item C, (no commonality)

(2) item AB and item C, (partial commonality)

(3) item AC and item B, (partial commonality)

(4) item BC and item A, (partial commonality)

(5) item ABC (total commonality).

In the case of four items, the number of commonality alternatives grows to 15 and,
for five items, to 52 alternatives. In all cases, all commonality alternatives but two
are "partial commonality" alternatives.

The enumeration of commonality alternatives is analogous to evaluating the par-
titions of M objects into N groups over all values of N from one to M. The number
of ways of sorting M objects into N groups is a Stirling number of the second kind [6]:

N

SM(N) = (lfN!) _._ (-1) N-k CN!/[k!-(N-k)!]} • k M .
k=0

5



There are 2,436,684,974,110,751 possible partitions of 25 objects into five groups. _f

the number of groups is varied from one to M, the number of possibilities is then a

sum of Stirling numbers:

M

S M = _ SM(N)
N=I

In the case of 25 observations, there are more than 4 x 1018 possible partitions of

any size (1 _< N _< 25). The total number of commonality alternatives for M _< 40 is

given in Table 1.

TABLE i. NUMBER OF COMMONALITY ALTERNATIVES FOR
40 ITEMS OR LESS

Number of Items Number of Commonality Alternatives

1

2 2

3 5

4 15

5 52

6 203

7 877

8 4,140

9 21,147

i0 115,975

15 i, 382,958,545

20 5.2 x 1013

25 4.6 x 1018

30 8.5 x 1023

35 2.8 x 1029

40 1.6 x 1035



For commonality analysis, the objective is to determine the optimal partition with

regard to cost. Given an objective function which will be minimum whet, a'_ optimal

partition of M objects into N groups with regard to cost has been achieved the most

straightforward solution is to evaluate all possible partitions.

In theory, of course, the problem is simple; to quote Dr. Idnozo

Hcahscror-Tenib, that super galactian hypermetrician who
appeared in Thorndike's 1953 Presidential address to the

Psychometric society, "Is easy. Finite number of combinations.

Only 563 billion billion billion. Try all. Keep best." [7]

While complete enumeration guarantees generation of an optimum solution, it is only

applicable to small sets of objects. If a supercomputer could evaluate one million par-

titions per second, more than one year would be needed to find the optimal partition

of 25 objects into five groups, and it would take approximately two thousand years to

determine the optimum partition of any size by exhaustive search.

D. Economic Feasibility of Commonality Alternatives

Recall that when item A is made common with item B, the new item AB must

satisfy the functional requirements of both item A and item B. In general, item AB

will then possess some excess functions when compared to item A and other excess

functions compared to item B. The manifestations of this excess functionality can be

increased weight, volume, and power consumption or decreased MTBF for hardware

items; another manifestation can be increased complexity of the item AB relative to

items A and B, resulting in increased purchased cost per unit.

When viewing commonality as a partitioning problem, the overall system life
cycle costs previously discussed can be reduced in one of two ways: (1) reduction
of the number of unique types of items N, and (2) reduction of the quantity of excess
functionality S. Clearly, for two items A and B which are functionally identical, cost
savings result from making A and B common; cost savings will follow from the elimina-
tion of a redundant R&D effort and from a single production lot instead of two smaller
production lots. However, in general, items A and B are only similar rather than
identical, and the analysis must address the cost effects associated with excess
functionality.

Recalling the various cost impacts of commonality discussed in a previous sec-

tion, these costs affected by N are strictly increasing in N. Given M functionally

similar types of items partitioned into N groups, the overall quantity of items, includ-

ing spares, is less than or equal to the overall quantity for M items partitioned into
M groups. Then, although commonality increases individual production lot sizes, the

net quantity over all production lots either decreases or remains constant. Thus, the

production cost for N types of items remains constant or, in the presence of a learning
curve, is strictly increasing in N. The spares production cost is then also constant

or strictly increasing in N. Fewer types of unique items N mean fewer spares which

must be stored onboard, reducing spares volume cost; thus, spares volume cost is

strictly increasing in N. If all RDC i are nonzero, then both the purchase cost and

operations cost are strictly increasing in N.

Likewise, as commonality results in fewer unique types of items, some or all of

the remaining types of items possess some excess functionality. This excess func-

tionality S manifests itself in terms of one or more the following: increased item

7



weight, volume, power consumption, MTTR, R&D cost, or first item production cost,
or reduced MTBF. The cost functions will increase for these changes in the variables,
as previously discussed.

Unlike N, neither the purchase cost nor the operations cost is strictly increas-
ing in S in general. For a particular commonality alternative, any increase in excess

functionality S necessarily results in increased cost. However, for a given level of
commonality N there will be any number of commonality alternatives, each with an
associated and, in general, distinct value of S. Since some commonality applications
result in greater cost savings than others, more excess functionality S may be asso-
ciated with greater overall cost effectiveness.

To illustrate the relationship of N and S, consider the development of three
functionally similar items A, B, and C. Their development requires three research
and development efforts (N=M=3), three production lots, three types of spares stored

on board, and given levels of launch cost, volume cost, energy cost, etc. The
development of a common item ABC for all three applications requires only one develop-
ment effort, and the production lot size is the sum of the former lot sizes for items
A, B, and C (N=I,M=3). In the presence of a learning curve, even small increases
in small production lot sizes can significantly lower unit production costs. Thus, cost
savings on the order of two R&D efforts plus some reduction in production costs will
result. For nonidentical items A, B, and C, some level of excess functionality S > 0
will result from the development of common item ABC. If the excess functionality S
of item ABC is small enough that the increases in launch cost, volume cost, energy
cost, etc., are smaller than the associated cost savings, then common item ABC is
cost effective.

Before deciding to implement common item ABC in place of items A, B, and C,
other commonality alternatives should be evaluated. In this case, common item AB and
item C, common item AC and item B, and common item BC and item A are the remain-

ing commonality alternatives. While the economic and technical factors governing the
advantageous application of commonality are understood from the development of the
SCAT, the method by which the entire solution space should be evaluated is not
established.

III. THE APPLICABILITY OF CLUSTERING METHODS

A. Relevant Applications Utilizing Cluster Analysis

While a formal method for commonality analysis has not been established, a
review of relevant literature does indicate a direction. A problem similar to common-

ality analysis is that of defining machine-component groupings in group technology.
Burbidge [8], one of the group technology pioneers, defined a method known as
"production flow analysis" to identify machine-component groupings. However,
because his production flow analysis was manual and largely heuristic in nature, it
was not widely applied. Later, McAuley [9] described a method for machine-component
grouping based on a single linkage cluster analysis approach. His approach was
based on a simple clustering technique, was relatively easy to implement on a compu-
ter, and generated consistent solutions. Recent research in the machine-component

grouping area [10,11,12] consists of variations of McAuley's clustering approach.



A study which, in retrospect, may be categorized as commonality analysis is
described by McCormick, et al. [13]. He used a cluster analysis to assess the com-

monality of the various aircraft within the Air Force. His study examined the func-

tions which could be performed by each aircraft and the applications required of
military aircraft. The result of his analysis was to group the aircraft into five

families with each member of a family having similar functionality. Likewise, the

applications were also grouped by similarity, where their similarity was defined as

being able to be performed by the same aircraft. A similar study of Army tactical
weapons and their functions was conducted by Perrin [14].

Yeager [15] specifically addresses commonality and formulates commonality
analysis as a partitioning problem, with the objective being to find the partition which
minimizes an objective function. He subsequently proceeds to develop the mathe-

matical framework for solution heuristics for a special case of commonality analysis.
In the case where the functions required of item A dominate those required by item B,
item A may substitute for item B rather than requiring a new item AB. He specifies
several types of relations which may be defined for a data set based on the feasibility
of these substitutions. These relations serve as the basis for a branch-and-bound

approach to pare the solution space to a level where the optimum solution may be
determined by exhaustive evaluation of the remaining alternatives. One such relation

is a joining relation whereby two objects are grouped in a single partition to improve
the objective function. Yeager suggests use of the joining relation in an algorithm
analogous to a clustering method.

B. Variance Based Clustering Methods

The foregoing discussion suggests that clustering methods may be applicable to
commonality analysis. Still, from the plethora of clustering methods available, the
selection of the most appropriate clustering method constitutes another problem.
Mojena [ 16] and Valev [17] noted the frequent use of hierarchical clustering methods
in partitioning applications. Mojena observed that these methods tend to produce
good, although not necessarily optimal, partitions. His study included a comparative
assessment of the several hierarchical methods based on Monte Carlo simulation, and
results indicated that variance methods performed best over the widest range of data
sets. Similar results were generated by Blashfield [18] and Milligan et al. [19].

Variance methods hierarchically build clusters in the manner which successively
minimizes the variance within each cluster, in effect minimizing the loss of information
involved in the clustering process [20]. Variance methods are very flexible in nature
and can be used to minimize an objective function in an analogous manner to minimiz-
ing variance; the clusters are hierarchically formed in a manner to successively mini-
mize the objective function. The steps involved in use of the variance algorithm are
as follows :

I) Begin with N clusters of one object each. Let the clusters be labeled 1
through N.

2) Determine the N x N lower triangular similarity (distance) matrix to docu-

ment the distances between all objects. The distance here, D(u,v), repre-

sents the change in the objective function which will be realized if objects
u and v are clustered.

3) Search the similarity matrix for the most similar pair of objects [minimum

D(u,v)]. Let these clusters be labeled p and q, with p < q.



4) Reduce the number of clusters, N, by one through the merger of clusters

p and q. Label the product of the merger p and remove the row and

column of the similarity matrix pertaining to cluster q.

5) Repeat steps (2) through (4) for the remaining clusters, which will again

result in one less cluster. Continue repeating steps (2) through (4), each

time reducing the number of clusters by one, until no further mergers are

possible which will reduce the objective function or, if a variance measure

is used, until all M objects constitute a single cluster.

Occasionally a tie situation may be encountered in step (3), with two or more pairs

of clusters having identically minimal distances D(u,v). Zupan [21] notes that the

most widely implemented tie resolution strategy is the selection of the first or last

pair of clusters having the same minimal distance, while Romesburg [22] suggests a

random selection strategy in the event of a tie.

C. Optimality Considerations

A problem encountered when clustering by hierarchical methods is that clusters

formed in the early stages of the analysis may lead to sub-optimal partitions in later

stages [7]. This is attributable to the fact that a hierarchical clustering scheme
imposes the ultrametric inequality on the distances D(u,v) in a similarity matrix.

The ultrametric inequality

D(u,v) _< max [D(u,w),D(v,w)]

was defined by Johnson [23] and requires, for any three objects A, B, and C in a

cluster analysis, that

D(AB,C) = D(A,C) = D(B,C)

The ultrametric inequality requires that the two objects or clusters u and v which are
separated by the minimum distance D(u,v) are each equally distant from all other
objects or clusters. Once clustered, the cluster uv and another object w, which are
separated by the minimum distance D(uv,w), are then each equally distant from all
other objects. The ultrametric inequality is a sufficient condition for optimality in
that if it holds for each stage of the hierarchical clustering process, it guarantees
an optimum solution. In general, a similarity matrix will not satisfy the ultrametric
inequality, and Johnson uses the condition only as a basis to derive two clustering
methods equivalent to the single and complete linkage techniques.

A dynamic programming approach developed by Jansen [24] generates globally

optimum solutions, but the algorithm is quite computationally intensive. While it does

reduce the solution space by orders of magnitude from that required by total enumera-

tion of partitions, the computational burden is excessive for problems involving more

than 12 to 15 objects. For example, assuming a supercomputer can evaluate one

million partitions per second, the time required by Jensen's algorithm to optimally

partition 25 objects into 10 groups is 16 hr. While at first glance this quantity

appears very large, it actually represents a tremendous reduction from the 3,800 years
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required by the same computer to solve the problem by complete enumeration. Still,
since commonality analyses have been defined which involve 100 or more objects, the
computational requirements of Jensen's method are obviously unacceptable.

Anderberg [25] suggests that upon determining the optimum partition via a
hierarchical method, a switching algorithm such as the k-means algorithm be employed
to improve the solution. Beginning with an initial partition, switching algorithms
consider each individual item to determine whether a move to another cluster improves
the solution, and repeats this process until no move of a single individual results in
further improvement. He observes that since the hierarchical solutions are, in general,
very close to optimum the heavy computational burden associated with the switching
algorithms is not prohibitive. The steps involved in the use of a switching algorithm
are as follows:

I) Generate an initial partition or set of N clusters. A hierarchical solution
is commonly used as the initial partition.

2) Take each object in sequence and evaluate the distance D(u,v) to each of
the N clusters. For item u which is a member of cluster k, if D(u,v) is
minimum for some v unequal to k, then switch object u to cluster v.

3) Repeat step (2) until no further switches decrease the objective function.

In general, the composition of clusters can change but the number of clusters will
not change from the application of a switching algorithm. While single object moves
will not necessarily generate an optimum solution, some improvement may be expected.

Of the many clustering methods available, a variance-based hierarchical cluster-

ing algorithm, which incorporates a switching algorithm for optimization, appears to be
the most applicable to commonality analysis. This type of clustering algorithm was

recently used to assess the commonality of the space station rack utility interfaces [26]

and showed significant potential for more general application to commonality analysis.

A generalized development of this clustering algorithm is presented in the following
section.

IV. A CLUSTERING BASED COMMONALITY
ANALYSIS METHODOLOGY

A. Specification of an Object

In a cluster analysis, the objects to be grouped typically have one or more
attributes which manifest the similarity between the objects. For the purpose of
commonality analysis, an object or item may be characterized by a real attribute vec-
tor. Given a group of items for commonality analysis, the attribute vector is m
dimensional, with each attribute representing a function required by at least one item.

Using underscores to denote vectors, let the attribute vector for item i be given as

X. ----<X. X >
--1 1,1' i,2 .... ' Xi,m
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where xi, j is a nonnegative real number. For each xi, j, the real entry represents

the quantity of a particular function j possessed by item i, with xi, j being zero if
that function is not required.

For example, consider the set of tanks given in Table 2, specified during the

preliminary design activity of the space station program.

TABLE 2. SPACE STATION WATER TANKS

Tank Quantity Weight(ibs) Volume(ft 3 ) R&D($k) Prod($k)

1 2 3.23 16.70 92.82 102.51

2 6 27.87 135.67 366.68 810.76

3 4 1.98 9.61 67.83 64.60

4 2 26.58 129.41 355.77 775.18

5 4 2.16 10.53 71.86 70.60

6 1 1.20 5.83 49.37 40.20

7 1 1.08 5.25 46.17 36.12

8 4 40.36 196.50 464.31 1152.11

9 3 29.26 142.42 378.24 844.66

Each tank i can be represented by a four-dimensional attribute vector where

xi, 1 = weight in pounds,

= volume in cubic feet,
xi,2

= research and development cost in thousands of dollars, andX.
1,3

xi,4 = production cost in thousands of dollars.

The attribute vector for tank 3 would then be

x 3 = < 1.975, 9.61, 67.833, 64.598 > .

In this example all attributes are nonzero. However, if one of the tanks required a
heater interface, the value of the heater interface attribute would be zero for the

other tanks.
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B. Specification of a Common Item

The mean attribute vector defines the span of common functions required by

the items within the cluster. The mean attribute vector for a cluster k is given as

-_k = <Uk,l' Vk,2 ..... Uk,m >

analogous to the definition of the attribute vector x i. Consider a function vector _B

which defines the operations by which each component of the mean attribute vector _
is determined :

_8 = <_1' _2' .... 8m>

Let each operation Bj in __ be defined such that

x _ (x 8j Y) -_ Y

for two nonnegative real numbers x and y, and let the following conditions hold over
the set of items Q in a commonality analysis:

1) Identity - -uX _8 x v = x u if x u = x v for all items u,v _ Q.

2) Commutativity - -uX _8 -vX = x v _8 x u for all items u,v e Q.

3) Associativity - x _ 8 _ 8 x w for all items u,v,w E Q-u - (X-v- Xw) = (Xu - Xv) -

For attributes such as structural load, flow rate, and MTBF, 8j will typically consti-

tute a maximum function whereas for attributes such as vibration, noise emission, and

error rate, 6j will typically constitute a minimum function.

For two items u and v, the mean attribute vector u of a common item uv is
given as

=< U i, U , ... U >-_uv uv, uv,2 ' uv,m

where each element u . may be determined as
UV,I

Uuv,j = Xu,j _j Xv,j ' j=l,2 ..... m
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or, in vector notation,

.=Uuv= x B x--U -- --V

In general, the mean attribute vector may be computed as a function of the attributes
of all items in the cluster as follows:

-_k = ('"((Xl B x 2) B x 3 ... 6 x M) , x i ¢ cluster k, i = 1,2 ..... M (1)

= <(...(Xl, 1 B1 x2, 1) 61 x3, 1) .-. B1 XM,1),

(-.-(Xl, 2 6 2 x2, 2) 6 2 x3, 2) --. B2 XM,2),

.... (...(Xl, m 6 m x2, m) Bm x3, m) --- 6m XM, m) >

where that are up to M items in cluster k and the attribute vector is m dimensional.
Other functions satisfying the conditions for 6 operations, such as an arithmetic

average, may be utilized for 6j as needed to define the components of the mean
attribute vector.

For example, consider the development of a common tank to replace tanks 6 and
7 given in Table 2. The attribute vectors for tanks 6 and 7 are

x 6 = < 1.2, 5.83, 49.374, 40.204 >

and

_x7 = < 1.08, 5.25, 46.166, 36.116 > .

Let a larger capacity tank be a technically feasible replacement for a smaller tank,
and define the function vector as

= < Max(y,z), Max(y,z), Max(y,z), Max(y,z) >

where

Max(y,z) = y if y _> z

= z if y < z for two real variables y and z _>0
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so that the attributes of the common tank will satisfy the more critical requirements
of the larger tank. Then the mean attribute vector for tanks 6 and 7 becomes

-_6 = < 1.2, 5.83, 49.374, 40.204 >

The function Max(y,z) is very common in commonality applications and, since all _j

were maximum functions, led to a mean attribute vector equal to the attribute vector
for tank 6. This outcome was observed because all attributes of the tanks are co-
increasing; an increase in any attribute implies increases in all other attributes.
In general this outcome will not occur.

In general the attributes of the common item defined by the mean attribute vec-
tor _u differ from each constituent item of that cluster. These differences represent
the excess functionality following from use of the common item in place of the
individual items. The excess functionality which results from commonality may then
be quantified as the sum of the differences between the mean attribute vector and the

individual attribute vectors of the members of a cluster. Let the quantity S define
the excess functionality which results from partitioning M items into N groups, N <
M, and let o define the excess functionality present in any one of the N groups.
Then S is given as

S =L._ ok , k = 1,2 .... ,N (2)
k

for each of N clusters k, where

• j=l
x. E cluster k , i=1,2 .... ,M (3)

' M 1

gives the excess functionality for each cluster. In equation (3), the constant C.
]

defines the relative weighting of the individual attributes and QN i is the number of
units of item i.

To illustrate the computation of the quantity Ok, consider the previous cluster-

ing of tanks 6 and 7. From Table 2, the units of x 1 are pounds while the units of

x 2 are cubic feet and the units of x 3 and x 4 are in dollars; the coefficients Cj may

be used to normalize these measures. Let the launch cost of i lb be $2,800 and let

the worth of 1 ft 3 of space inside a pressurized module be $10,000. Since the appli-

cation of commonality is in essence one of substituting a larger tank for a smaller

tank in this instance, the net R&D cost will decrease from commonality by eliminating
the development effort of the smaller tanks; this cost decrease can be accounted for

in the objective function. However, the production cost will increase since it costs
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more to produce the larger tanks than the smaller tanks. Then the excess function-
ality may be normalized in terms of cost (in $k) by letting C1 = $2.8/lb, C 2 = $10.0/

ft 3 C 3 = 0 and C 4 = 1. Using equation (3) with QN 6 = QN 7 = 1

o 6 = _ [2.8(]xi, 1 - U6,11) + lO.O(Ixi, 2 - u6,2]) + O(]xi, 3
i=6,7

- u6,31)

+ 1( ]xi, 4  6,4l)1

= [2.8(11.2 - 1.21) + 10.0(15.83 - 5.831) + 1([40.204 - 40.2041)]

+ [2.8(I1.08 - 1.21) + 10.0(15.25 - 5.83[) + 1(136.116 - 40.2041)]

= 10.224

Thus, the extra weight, extra volume, and increased manufacturing cost which result
when tank 6 is used as a common tank for both tanks 6 and 7 may be quantified as a
cost of $I0,224. Hence, tanks 6 and 7 should be made common only if the cost sav-

ings resulting from commonality exceed $10,224. This comparison will be addressed
subsequently.

C. Selection of Commonality Alternatives

The standardization which follows from commonality reduces cost, but the excess

functionality which results increases cost; hence, commonality should be applied only
when the cost reductions from standardization are larger in magnitude than the cost

increases from excess functionality. Recall the economic feasibility of commonality

alternatives from Section If. Let the cost of a particular partition which groups M

functionally similar items into N clusters - with an associated level of excess func-

tionality S - be described by some cost function f(n,s) where real variables n and s

equal N and S, respectively. Additionally, let f(n,s) be a strictly increasing function

in n. Then an objective function of the form

Z = f(n,s) (4)

may be used to evaluate the net change in cost associated with various levels of com-

monality. The grouping of items which minimizes Z is the optimum partition.

Consider the formulation of an objective function for the tankage commonality

example discussed previously. The cost to produce the tanks may be determined by
summing the research and development cost, the production cost, and the cost
increases due to extra weight, volume, and increased complexity. Assume that there
is no learning curve present. An objective function of the form
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n

+ s (5)

may then be used to compare the cost effectiveness of different commonality alter-
natives with associated values of N and S. Note that the function Z is not a cost

estimating function; in this case, the manufacturing cost is not included. However,
Z does provide an accounting of the costs which are impacted by commonality. Recall
that the increase in manufacturing cost due to commonality is included in S. If it is
desired to use Z as a cost function, the constant costs may be incorporated.

Recall from Section III that the distance D(u,v) between two items is defined

as the change in the objective function which will result if the two items are merged
into a single cluster. Making two items u and v common will decrease N by one and
will increase S. In Appendix A it is shown that for two clusters k and 1 each com-
prised of one or more items,

_kl = _k + _1 + _ (k,1) (6)

where _(k,1) _> 0. Thus, from equations (2) and (6), _(u,v) defines the increase

in S which results from making items u and v common.

When a clustering of item u with item v decreases Z, the benefits of commonality
outweigh the costs of excess functionality. The cost effectiveness of making items u
and v common is then

D(u,v) = Z[N-l,S+6(u,v)] = Z(N,S)

= f[N-I,S+5 (u,v)] f(N,S)

(7)

where N and S are the number of clusters and excess functionality for two types of

items u and v. D(u,v) then represents the signed magnitude of the cost impact

resulting from making items u and v common.

Again consider the use of a common tank instead of tanks 6 and 7. Using the

objective function developed in the previous example, the cost to implement all nine

(N=9) types of tanks listed in Table 2 may be determined as

Z(9,0) =I_ k _k,3} + S

= {92.819 + 366.685 + ... + 378.24} + 0

_¢ 1,893

where S is zero since there is no excess functionality present. If a common tank is

used for tanks 6 and 7, then there are eight types of tanks (N=8) and the excess
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functionality (S=10.224) was determined in a previous example. The cost to implement
these eight types of tanks is then

Z(8,10.224) =Ik_ Uk,3} + S

= {92.819 + 366.685 + ... + 49.374 (common tank)

+ 464.31 + 378.24} + 10.224

1,857

The cost effectiveness of making tanks 6 and 7 common is then

D(6,7) = Z(8,6.66) Z(9,0)

= 1,857 - 1.893

= -36

which represents a net cost savings of approximately $36,000 from commonality. In

this instance, the cost savings resulting from commonality outweigh the cost incurred

due to excess functionality, and the commonality application is cost effective.

D. Optimality Considerations in the Selection of
Commonality Alternatives

Consider the sorting of three objects a, b, and c, into two groups. Given an
objective function Z, whose value on the initial partition {[a], [b] ,[c] } is denoted

Zinit, the clustering algorithm previously discussed would cluster these objects by

determining the minimum of D(a,b), D(a,c), and D(b,c). The two objects having the
minimum D(u,v) would then be combined into one group. Let D(a,b) be the minimum
distance; then, objects a and b are clustered to give the partition {[a,b],[c]}. The

value of the objective function for this grouping is Zinit + D(a,b). Since D(a,b) _<

D(a,c) and D(a,b) < D(b,c), the objective function is minimized for this set of three
objects grouped into two partitions.

Next, consider the hierarchical sorting of four objects a, b, c, and d, into two

groups. Let the objective function Z assume the value Zinit on the initialpartition

{[a] ,[b] ,[c] ,[d] }. As before, let _(a,b) be the minimum distance such that the

partition ([a,b] ,[c], [d] } gives the minimum value of Z for three groups and equals

the sum of Zinit and D(a,b). One more clustering step must be performed to achieve

two groups. A hierarchical clustering method treats the group [a,b] as a single item

in that only the distances D(c,ab), D(d,ab), and D(c,d) are evaluated. Again the
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minimum D(u,v) is selected to yield a partition of two groups. With no loss of
generality, let D(c,ab) be the minimum, resulting in the partition {[a,b,c] ,[d] }.

This partition does not necessarily yield the minimum value of Z for two groups.
Although D(a,b) < D(b,c), it is possible that D(a,b) + D(c,ab) > D(b,c) + D(d,bc)
or other possible combinations. Still, a sufficient condition for the partition of four
items into two groups to yield a minimum value of Z may be developed.

E. S-Minimal Partitions

Recall from Section II that the application of commonality to a given set of items
u and v decreases some costs and increases others. The cost increases which result

from commonality are included in the determination of the quantity of excess function-

ality S. If the cost reductions attributable to commonality are constant for the forma-
tion of a common item from any two types of items, then the cost effectiveness of

commonality is determined solely by the associated excess functionality S. At any

step in the hierarchical clustering procedure, the minimum distance D(u,v) will occur

for those two items having the minimum 8 (u,v). In this case, the objective function

Z is then strictly increasing in s for n=N and thus may be minimized for a given N
by determining the partition having the minimum S.

In Appendix A, it is shown that the excess functionality which results from the

merger of two clusters is at least as large at the maximum 8 (u,v) for any two mem-

bers of the respective clusters:

_k + °1 + _ (k,1) > Maximum {6 (u,v) } (8)

for all items u,v which are members of either cluster k or cluster I. From equation
(8), if for two clusters k and l each consisting of one or more items,

ok + oI _< Minimum {6(u,v)} for all u e cluster k and v _ cluster 1 (9)

then any partition including items from both clusters k and 1 will, by equation (8),

have excess functionality at least as large as ok + 01 . For a given N, a partition in

which all clusters taken pairwise satisfy equation (9) is S-minimal in that no other
partition exists which gives a smaller value of S. If the cost savings of commonality
is constant for the clustering of any two items, then this partition is also Z-minimal
in that no other partition will further decrease the objective function.

To illustrate the use of the sufficiency condition of equation (9) for S-minimal

partitions, consider the partition {(abc),(def),(ghij)} of ten objects into three groups.
For this partition, by equation (2)

S = _abc +°def + °ghij

Using equation (9), the following inequalities are formed from the pairwise combina-
tions of the groups:
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_abc + _def < Minimum {6(a,d), 6(a,e), ..., 6(c,f)} ,

aabc + _ghij < Minimum {6 (a,g), 6 (a,h) ..... 6 (c,j) } ,

_def + _ghij _ Minimum {5 (d,g), 6(d,h) ..... 6 (f,j)} .

If these inequalities hold for the partition {(abc),(def),(ghij)} then it is an S-minimal

partition. A proof is given in Appendix A.

F. Z-Minimal Partitions

The objective function, as given in equation (4), is a function of real variables
n and s where n is the number of clusters and s is excess functionality. If it is

possible to dichotomize the cost impacts of commonality such that

Z = fl(n,s) + f2(n,s) + C

where

f1(n,s) quantifies the cost savings attributable to commonality,

f2(n,s) quantifies the cost increases attributable to commonality, and

C quantifies costs not impacted by commonality,

Then in general

Z = fl(n,s) + s + C
(10)

since the cost increases which result from commonality are included in the determina-

tion of the excess functionality S. Recall that S is always nonnegative; since

fl(n,s) only quantifies cost savings, it is always nonpositive.

In the previous section, fl(n,s) was treated as a linear function of n and a

sufficient condition for Z-minimal partitions was defined. If fl(n,s) is not a linear

function of n, the condition of equation (9) cannot be employed. However, it is

possible to bound the changes in fl(n,s) which result from the clustering of any two

items. This bound, taken in conjunction with equation (9), may be used to verify

Z-minimal partitions in general.
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Just as the quantity S denotes the total excess functionality resulting from the

use of N types of items in M unique applications, fI(N,S) denotes the total cost

savings which result from this commonality. The quantity ak is employed to denote

the quantity of excess functionality associated with any one of the N types of items k.

Let the quantity c_ likewise denote the cost savings associated with the kth of N

types of items. The definition of commonality cost savings as

fl (n's) = /_ _k ' for k = 1,2,...,n (11)
k

is analogous to the definition of excess functionality S in equation (2).

The quantity ak is the sum of all research and development efforts eliminated

and the manufacturing cost reductions through the formation of cluster k or the
development of common item k. If cluster k consists of only one type of item, then

_k' like ak, is zero. Let the R&D cost for item u be denoted R&D(u) and let the

manufacturing cost savings which result from the quantity of item u be denoted

MAN(u,QN u) where QN i is the quantity of i. In Appendix A, it is shown that for

two clusters k and l each composed of two or more items,

a*(k) = [Maximum(R&D(u)} + Maximum{MAN(v,QN k + QNI)} ]

- [Minimum{R&D(w) } + Minimum{MAN(y,QNy) }] (12)

for all u,v,w,y E cluster k, is the maximum reduction in fl(N,S) which can be

incurred from switching one or more items from cluster k to cluster I. If cluster k
contains only one item, a*(k) is undefined since merging it with another cluster would
reduce N.

If inequality (9) holds for two clusters k and l and the minimum 6(u,v) is
sufficiently large, then this S-minimal partition will also be Z-minimal. Given two
clusters k and l each comprised of one or more items, if

ak + al + Maximum{a*(k),a*(1)} _< Minimum(6(u,v)} (13)

for all u E cluster k and v E cluster 1, then any partition including items of cluster
k and cluster 1 cannot reduce the objective function Z. The term

Maximum {a*(k), a*(1) }

is used to make the condition binding for switching items from cluster k to cluster l
or for switching items from cluster 1 to cluster k. Equation (13) defines a sufficient

condition for a Z-minimal partition of M items into N groups when an objective
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function of the form given in equation (10) may be used. For a given N, if all

clusters taken pairwise satisfy equation (13), the partition is Z-minimal.

To illustrate the use of this condition, consider the sorting of tanks 2, 4, 6,

and 7 from Table 2 into two groups. The objective function employed in a prior

example [equation (5)] is of the form given in equation (10), and it will be employed

here also. From the prior example, it was determined that D(6,7) = -36. In like

fashion, it may be determined that D(2,4) = -150. The partition {(2,4),(6,7)} then

reduces the objective function by a total of -186. The excess functionality a6, 7

between tanks 6 and 7 was also determined in an earlier example. Using the same

method, the excess functionality which results from any pairwise combination of these

four tanks is tabulated in the following matrix (in $K):

2 4 6 7

203 - - -

2,144 2,042 - -

2,154 2,052 I0 -

2

4

6

7

Denoting the two groups comprising the partition as clusters 2,4 and 6,7, it is
= 203 and = i0. It is also observed that the minimum inter-

observed that a2,4 a6,7

cluster 6(u,v) is 6(4,6) = 2,042. By the condition of equation (9), the partition

{(2,4) ,(6,7) } is S-minimal since

a2,4 + a6, 7 _< Minimum(_(u,v)}

213 _< 2,042

for u = 2,4 and v = 6,7

The maximum cost savings which could result from switching either tank 2 or

tank 4 to cluster 6,7 is

_*(2,4) = Maximum{x2,3,x4,3} - Minimum{x2,3,x4,3}

= Maximum {366,355} - Minimum {366,355}

= 11

by equation (12). Likewise, the maximum cost savings which could result from switch-

ing either tank 6 or 7 to cluster 2,4 is

_*(6,7) = 3

k
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also by equation (12). Now,

_2,4 + _6,7 + Maximum{a*(2,4),a*(6,7)} = 203 + 10 +11

= 224

Since the minimum intercluster 5(u,v) = 2,042, then by the sufficient condition of

equation (13) the partition {(2,4),(6,7)} is Z-minimal; none of the other six ways of
sorting these four types of tanks into two groups can yield a lower value of the
objective function.

By varying the number of clusters N and determining the Z-minimal partition

for each value of N, the optimal partition and globally minimum value of the objective
function Z can be established. However, the conditions of equations (9) and (13) are

only sufficient for a Z-minimal partition; neither is a necessary condition. Therefore,

even though a partition may indeed be Z-minimal, it may not be possible to verify it

without complete enumeration. In these cases, the sufficiency conditions may be

employed in a branch-and-bound algorithm similar to that of Yeager [15] to eliminate
some partitions from the solution space.

G. Illustration of Methodology

To demonstrate this commonality analysis methodology, consider the implementa-

tion of the clustering algorithm discussed in Section III using the tank data of

Table 2. The first part of the clustering algorithm employes hierarchical clustering
techniques to approximate an optimal commonality solution. The specification of an

object and the objective function to be minimized were discussed in prior examples
and will be used here without introduction.

Step i. The algorithm begins with no commonality assumed, or N clusters of

one type_object each. In this case, the partition {1,2,3,4,5,6,7,8,9} represents
the "no commonality" option.

Step 2. Equation (7) may be employed to calculate the distance D(u,v) between
each type of tank using the objective function given in equation (5). These distances

comprise the entries in the similarity matrix given in Table 3.

Step 3. Note from Table 3 that the minimum entry is D(2,4) = -0.152, indicat-
ing that use of a common tank instead of tanks 2 and 4 is the most cost effective
commonality alternative.

Step 4. Objects 2 and 4 are clustered and treated as a sip gle object, object 2,
in subsequent steps. Object 4 is removed from the similarity matrix.

Step 5. Steps 2 through 4 are repeated until no mergers are possible which
further reduce the objective function, or all entries in the similarity matrix are

positive. Step 2 yields the similarity matrix given in Table 4. In step 3, inspection
of Table 4 reveals that D(6,7) = -0.036 is the minimum entry, and thus these two
items are clustered in step 4. Continuing in this fashion, tanks 3 and 5 are clustered

in the following cycle. After clustering tanks 3 and 5, the next similarity matrix,

given in Table 5, contains no negative entries, indicating that no further commonality
is cost effective.
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TABLE 4. SECOND SIMILARITY MATRIX FOR SPACE STATION

WATER TANKS ($M)

1 2 3 5 6 7 8 9

1

2

3

5

6

7

8

9

3.8 - -

0.38 8.2 -

0.31 8.2 -0.005

0.13 2.1 0.015

0.14 2.1 0.028

5.8 7.5 12.2

4.1 0.48 8.7

0.031 ....

0.044 -0.036 - - -

12.1 3.1 3.1 - -

8.6 2.2 2.2 2.3 -

TABLE 5.

1

2

3

6

8

9

FINAL SIMILARITY MATRIX FOR SPACE STATION

WATER TANKS ($M)

1 2 3 6 8 9

3.8 - -

0.70 16.4 -

0.30 4.2 0.ii

5.8 7.5 24.3

4.1 0.48 17.3

m

6.2

4.4 2.3
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The hierarchical approximation to the optimal commonality solution is {l, (2,4), (3,5),
(6,7),8,9} and the nine original types of tanks have been replaced by six types of
tanks. The cost of the excess functionality resulting from this partition is approxi-
mately $272,000. Recall that Z(9,0)=1,893 (in Sk) from a previous example. The
value of the objective function for this partition [Z(6,272)] is 1,700 (in $k), repre-
senting a total cost reduction of approximately $193,000.

The second part of the clustering algorithm employs switching methods to
improve the hierarchical solution. The definition of an object and the objective func-
tion are unchanged from those used above.

Step 1. The hierarchical approximation determined above will be used as the

initial partit{on: {i,(2,4), (3,5) ,(6,7) ,8,9}.

_. Equation (7) may then be employed to determine the distances between
the individual objects and the other clusters, for example the distance between object

4 and cluster (6,7). The switching similarity matrix which results is given in Table 6.

Step 3. Inspection of Table 6 reveals that in all cases the minimum distance

for each object is for the cluster in which the object is a member. Thus, any switch

would increase the objective function and no further steps are required.

Therefore, the clustering solution to this tankage commonality analysis problem is

defined by the partition {i,(2,4),(3,5),(6,7),8,9}.

TABLE 6. MODIFIED SIMILARITY MATRIX FOR SPACE STATION

WATER TANKS ($M)

1 (2,4) (3,5) (6,7) 8 9

1

2

3

4

5

6

7

8

9

- 3.8 0.70 0.30 5.8 4.1

3.8 -0.15 16.3 4.16 5.5 0.27

0.38 8.2 -0.005 0.055 12.2 8.7

3.6 -0.15 15.6 4.0 1.8 0.058

0.31 8.2 -0.005 0.082 12.1 8.6

0.13 2.1 0.023 -0.036 3.1 2.2

0.14 2.1 0.040 -0.036 3.1 2.2

5.8 7.5 24.3 6.2 - 2.3

4.1 0.48 17.3 4.4 2.3 -
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Since the switching portion of the algoritm did not change the hierarchical
approximation and because the size of the data set is relatively small (M=9), this
approximate solution may indeed be the optimum. The sufficient conditions for
Z-minimal partitions developed earlier may be employed to examine the optimality of
this solution. The increases in S, 6(u,v), which result from the clustering of any
two tanks is given in Table 7. The maximum increase in cost savings, _*, possible
from switching tanks between clusters is given in Table 8. The excess functionality

ak associated with each cluster is given in Table 9. The partition {1,(2,4),(3,5),

(6,7),8,9} is comprised of six clusters - three single item clusters and three double

item clusters. Since the sufficiency condition of equation (13) applies to clusters
taken pairwise, a total of 15 inequalities must be examined. These inequalities are
as follows :

1. a 1 + a 2 + Maximum { a*(1) , a*( 2) } < Minimum(6(u,v)} , u = 1, v = 2,4

2. a 1 + a3 + Maximum { a*(1) , a*( 3) } < Minimum{6(u,v)} , u = 1, v = 3,5

3. a 1 + a6 + Maximum{a*(1),a*(6)} <_ Minimum{6(u,v)} , u = 1, v = 6,7

4. aI + a8 + Maximum{a*(1),a*(8)} <Minimum{_(u,v) } , u = I, v = 8

5. a 1 + a9 + Maximum{a*(1),a*(9)} _ Minimum{6(u,v) } , u = 1, v = 9

6. o2 + o3 + Maximum{a*(2),a*(3)} < Minimum{5(u,v) } , u = 2,4, v = 3,5

7. a2 + o6 + Maximum{a*(2),a*(6)) < Minimum{6(u,v) } , u - 2,4, v = 6,7

8. a2 + o8 + Maximum{a*(2),a*(8)} <Minimum{5(u,v) } , u = 2,4, v = 8

9. a2 + o9 + Maximum{a*(2),a*(9)) < Minimum{6(u,v) } , u = 2,4, v = 9

I0. a3 + o6 + Maximum{a*(3),a*(6)} < Minimum{5(u,v)} , u = 3,6, v = 6,7

II. a3 + a8 + Maximum{a*(3),a*(8)} < Minimum{_(u,v) } , u = 3,6, v = 8

12. a3 + o9 + Maximum{a*(3),a*(9)} < Minimum{5(u,v) } , u = 3,6, v = 9

13. a6 + a8 + Maximum{a*(6),a*(8)} _< Minimum{_(u,v) } , u = 6,7, v = 8

14. o6 + a9 + Maximum{a*(6),a*(9)} < Minimum {6(u,v) } , u = 6,7, v = 9

15. a8 + o9 + Maximum{a*(8),a*(9)} <_Minimum {6(u,v) } , u = 8, v = 9

From Tables 7, 8, and 9, it may be determined that all inequalities hold except for
inequality number 10. Thus, in order to verify the partition as Z-minimal, some
enumeration of alternatives will be required.
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TABLE 7. INCREASE IN EXCESS FUNCTIONALITY [_,_(u,v)] FROM

THE CLUSTERING OF ANY TWO TANKS ($M)

1 2 3 4 5 6 7 8 9

3.93

0.45

3.73

0.39

0.18

0.19

5.90

4.14

....... Q

8.32 .......

0.20 7.91 ......

8.25 0.062 7.85 .....

2.14 0.064 2.04 0.08 ....

2.15 0.07 2.05 0.09 0.01 - - -

5.91 12.26 2.17 12.19 3.13 3. 14 - -

0.63 8.74 0.41 8.68 2.25 2.26 2.64 -
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TABLE 8.

Cluster (k)

1

2

3

6

8

9

TABLE 9.

Cluster (k)

MAXIMUM COST SAVINGS FROM SWITCHING

TANKS BETWEEN CLUSTERS

Members a k ($M)

1

2,4 0.011

3,5 0.004

6,7 0.003

8

9

EXCESS FUNCTIONALITY OF CLUSTERS

IN CLUSTERING SOLUTION

Members a k ($M)

1 1 0

2 2,4 0.203

3 3,5 0.063

6 6,7 0.010

8 8 0

9 9 0



Since only inequality number 10 is violated, the only possible partitions which
could reduce the objective function involve switching tanks between clusters 3 and 6.

The given partition of tanks 3, 5, 6, and 7 is {(3,5),(6,7)}. Other partitions of
these four tanks into two groups include

{3,(5,6,7) }

{(3,5,6),7}

{(3,5,7),6}

{(3,6),(5,7) }

{(3,7),(5,6) }

{5,(3,6,7) }

and it may be verified that each of these partitions results in a larger value of the

objective function Z than the partition {(3,5),(6,7)}. Therefore, using a combined
approach of the sufficiency condition and enumeration in the manner of a branch-and-
bound algorithm, the partition {1,(2,4),(3,5),(6,7),8,9} is verified as a Z-minimal
partition of nine objects into six groups. In this case, the clustering solution was a
Z-minimal partition.

With regard to the optimality of the partition {i,(2,4),(3,5),(6,7),8,9}, recall

that Z-minimal partitions must be generated for all N. The Z-minimal partitions were

determined for N = 1,2, .... 9 by varying the level of D(u,v) which terminates the

hierarchical clustering procedure. In all cases, the clustering solution was a Z-

minimal partition. These partitions and resulting values of the objective function are

given in Table I0. Using the data of Tables 7, 8, and 9 together with the fact that

a2 = 0.85 for the group (2,4,9), a2 = 9.67 for the group (2,4,8,9), a3 = 0.60 for the

group (3,5,6,7) and, a3 = 1.61 for the group (1,3,5,6,7), the partitions of Table I0

may be verified as Z-minimal. (Some enumeration is required to verify the partition

for N=2 as Z-minimal.)

TABLE I0. Z-MINIMAL PARTITIONS OVER RANGE OF N

N

1

Z-Minimal Partition

{(i,2,3,4,5,6,7,8,9)}

Z(N,S)

47,800

{(1,3,5,6,7), (2,4,8,9) } 12,474

((1,3,5,6,7), (2,4,9),8) 3,180

4 {i, (2,4,9), (3,5,6,7),8) 2,286

5 (1, (2,4), (3,5,6,7),8,9) 1,810

6 (1, (2,4), (3,5), (6,7),8,9) 1,700

7 {i,(2,4),3,5,(6,7),8,9) 1,705

8 (i,(2,4),3,5,6,7,8,9} 1,741

9 (1,2,3,4,5,6,7,8,9) 1,893
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Note from Table i0 that the minimum value of the objective function is achieved
for N=6, and thus the optimal partition of the nine tanks in Table 2 is {1,(2,4),(3,5),
(6,7),8,9} and the minimum value of the objective function is Z = 1,700. As com-
monality is increased beyond N=6 to N=5, the costs incurred due to excess function-
ality are larger than the cost savings due to commonality, and the value of the
objective function increases to 1,810. In fact, the costs incurred due to excess
functionality for further increases in commonality (N=4,3,2,1) are so large that these
options actually cost more than the "no commonality" option (N=9).

V. COMMONALITY ANALYSIS AND THE SYSTEM
DEVELOPMENT CYCLE

A. General

The definition of a commonality analysis methodology, as described in the pre-

ceding sections, is a significant step. However, knowing how to solve a problem
does not give answers unless one knows what problems to solve. Since commonality
analysis is an emerging systems-engineering technique, little is known about how to
apply commonality analysis in the evolutionary development of an aerospace system.
In effect, now that the "how" of commonality analysis has been defined, the "where"

must be addressed.

B. The System Design Process

The aerospace systems engineering process is typically divided into four steps

or project phases:

Phase A: Conceptual Design,

Phase B: Preliminary Design,

Phase C: Detail Design,

Phase D: Development.

The major resource expenditure for system development occurs in phases C and D.

The primary objective of phase A and B studies is to provide a technical, scientific,
and programmatic basis for the commitment of major resources to phases C and D of

a project [27].

The initial step in Conceptual Design is a needs analysis. The purpose of the

needs analysis is to identify the functional requirements of the system. A feasibility
analysis is then conducted to identify alternative candidate systems and compare their
strengths and weaknesses. Ostrofsky [28] describes the feasibility analysis as the
sorting of the system functions, identified in the needs analysis, into groups which
tend to be independent. These groups comprise the subsystems, which are in turn
subdivided into major components and so on until a candidate system is defined. For

a large scale system, there may be many alternate groupings of the system functions,
and thus many candidate systems. By the conclusion of Conceptual Design, an initial

screening of candidate system configurations has been performed to identify those

which best satisfy the functional requirements of the system.
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The Preliminary Design phase adds detail to the candidate systems developed in
Conceptual Design and selects an optimal system specification. Feasibility studies are

conducted to determine the optimal subsystem and component compositions for each

candidate system. Using this increased quantity and quality of information as a basis,

system performance models are constructed and used to compare the candidate systems.

This system evaluation effort will lead to the selection of an optimal approach - that

candidate system configuration which best satisfies the functional requirements of the

system identified in the Conceptual Design phase. This system specification is then

studied to further define the intersubsystem and intrasubsystem interfaces, associated

functional allocations, and performance requirements to the subsystems and components.

By the conclusion of Preliminary Design, a single definitive baseline configuration has

been specified.

In the prior design phases, activity was directed toward an efficient choice of

the optimal candidate system. The Detail Design and Development phases are oriented

toward implementation of the optimal system configuration and are frequently referenced

together as Phase C/D. The Detail Design activity defines manufacturing and testing

plans for all of the parts of the system, develops schedules, and estimates cost.

Prototype parts are typically constructed to verify the engineering approach and con-

formance to system requirements. The Detail Design phase culminates in design

specifications for the various parts of the system. The Development phase then con-

structs the parts in accordance with the detailed system specification. A test program

is used in the Development phase to qualify the item in terms of operational require-
ments.

Design reviews are employed as milestones during the Conceptual, Preliminary,

and Detail Design phases of the system design process. The objective of a design

review is to identify deficiencies in the design and to recommend corrective actions.

Deficiencies are not necessarily flaws in the design, but can involve areas such as

conflicting system requirements or cost considerations. Although the exact nature of

the reviews may vary, most programs include four basic reviews. They include the

Conceptual Design Review near the conclusion of Conceptual Design, the System

Design Review near the conclusion of Preliminary Design, and the Equipment and

Critical Design Reviews during the Detail Design phase [I]. The Conceptual and

Systems Design Reviews cover the system evolution in the Conceptual and Preliminary

Design phases, respectively. The Equipment Design Review is scheduled near the

beginning of the engineering release of detailed system specifications for manufactur-

ing and establishes baseline design requirements. The Critical Design Review is

scheduled near the completion of the engineering release of detailed system specifica-

tions and establishes the design baseline.

C. The Role of Commonality Analysis in Conceptual Design

The objective of commonality analysis is to determine which, if any, items in a

set should be developed as a single item and which should not. In Sections I! and
IV it was shown that the cost effectiveness of commonality is a function of the excess
functionality which results from making two or more items common. As a result, items
having relatively distinct functions will not, in general, be cost effective if developed
as a common item.

One principal activity during Conceptual Design is the definition of candidate

system configurations. The various candidate systems are formed by different sub-

divisions of the system into subsystems. The subsystems are by definition largely
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independent and, thus, have distinct functions. For this reason, in general, there
exists little potential for commonality at the subsystem level. As the major components
of the respective subsystems are specified and, in tim, themselves subdivided, the
opportunity for functional similarity between items both within and between subsystem_
increases. For example, electric motors may be required to power blowers in the air
conditioning subsystem and to power pumps in the thermal control system. However,

in general, this level of detail is not present in Conceptual Design, restricting the

application of commonality analysis.

In some cases, commonality may be analyzed at a high enough level to be of
use in Conceptual Design. The common cockpit for the Boeing 757 and 767 aircraft
constitutes one example. While the common cockpit was not studied until the latter
design phases for the aircraft, Boeing observed that earlier recognition of the advan-
tages of a common cockpit would have increased its cost effectiveness:

[The 757/767 common cockpit] ... resulted in additional weight for
the 757 [airplane]. The increased weight, however, was determined
to be cost effective when evaluated against the advantages gained by
the common type (pilot) rating, as well as common hardware for the
two airplanes... If the cockpit commonality goal had been established
earlier during the concept design phase of the two airplanes, the
weight penalty for the 757 [airplane] may not have been as great [3].

In summary, the role of commonality analysis in Conceptual Design is generally
restricted to high level applications such as a common subsystem between two differ-

ent systems. In these instances where commonality may be explored, recommendations

for and against commonality should be addressed in the Conceptual Design Review for

the various candidate systems [29]. If commonality analysis is overlooked, the full

cost effectiveness of its application may not be realized. While the zealous pursuit of

commonality to low levels during Conceptual Design is not warranted, commonality

analysis must not be deferred to later design phases.

D. Commonality Analysis of Sp:ace Station Module
Berthing Interfaces

A study performed during the Conceptual Design phase of the space station
involved the berthing interface between space station modules [30]. The manner in
which utilities must be passed between modules was identified as a key area affecting
the cost and feasibility of one particular candidate configuration of the space station.
The study was performed to determine the feasibility and composition of a standard
interface between modules. Several heuristic strategies were employed in this com-
monality analysis and recommendations for a common berthing interface were offered
as a result.

The berthing interfaces are required to perform various subsets of 25 functions.
Thus, a 25-dimensional attribute vector is required to define an interface as follows:

x._l = <x.1,1, xi,2 ..... xi,25

A listing of these functions is given in Table ii. A total of 48 berthing interfaces

were identified for this study. A matrix defining the attribute vector of each inter-

face is given in Table 12. The attribute vector for interface number 25 is
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TABLE ii. BERTHING INTERFACE FUNCTIONS

Number Function

1

2

3

4

5

6

-7

8

9

I0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Power

Thermal Fluid

Commands Data

Communications

Attached Load

Attached Torque

Water

Oxygen and Nitrogen Supply

Return Air

Active Module Berth

Passive Module Berth

Active Shuttle Dock

Passive Shuttle Dock

Active Pallet Dock

Passive Pallet Dock

Active TMS Berth

Passive TMS Berth

IVA

EVA Airlock

Rotary Joint

Active Satellite Servicing

Passive Satellite Servicing

Remote Manipulator System

EVA Workstation

Remote Manipulator System Grapple
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TABLE 12. MODULEBERTHING INTERFACES

Number Attribute Vector

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

< i,i,i,i,i,I,i,0,0,0,i,0,0,0,0,0,0,0,0,i,0,0,0,0,0 >

< I,I,i,i,i,i,0,i,I,0,i,0,0,0,0,0,0,i,0,0,0,0,0,0,0 >

< I,i,I,i,i,I,I,i,I,0,i,0,0,0,0,0,0,0,0,0,0,0,0,0,0 >

< i,i,I,i,i,i,0,i,I,0,I,0,0,0,0,0,0,i,0,0,0,0,0,0,0 >

< I,i,i,0,I,I,0,0,0,0,i,0,0,0,0,0,0,i,0,0,0,0,0,0,0 >

< I,i,I,i,I,i,0,i,i,0,i,0,0,0,0,0,0,i,0,0,0,0,0,0,0 >

< I,i,i,i,i,i,0,0,0,i,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 >

< 1,0,I,0,i,i,0,0,0,0,i,0,0,0,0,0,0,0,0,0,0,0,0,0,0 >

< 1,0,0,0,i,I,0,0,0,0,0,0,0,0,0,0,0,0,0,I,0,0,0,0,0 >

< I,i,i,0,i,i,0,0,0,0,0,0,0,0,0,0,0,0,0,i,0,0,0,0,0 >

< 1,0,i,0,i,i,0,0,0,i,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 >

< i,i,i,0,i,i,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 >

< i,I,i,0,I,i,0,0,0,0,0,0,0,0,i,0,0,0,0,0,0,0,0,0,0 >

< 1,0,0,0,I,i,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 >

< i,i,i,i,i,I,i,i,I,i,0,0,0,0,0,0,0,i,0,0,0,0,0,0,0 >

< 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,i,0,0,0,0,0,0 >

< I,i,I,0,i,i,0,0,0,i,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 >

< I,I,i,0,i,i,0,0,0,0,0,0,0,0,i,0,0,0,0,0,0,0,0,0,0 >

< i,I,i,0,i,i,0,0,0,0,0,0,0,0,I,0,0,0,0,0,0,0,0,0,0 >

< i,i,i,i,i,i,0,i,i,i,0,0,0,0,0,0,0,i,0,0,0,0,0,0,0 >

< i,I,i,I,I,i,I,i,i,i,0,0,0,0,0,0,0,i,0,0,0,0,0,0,0 >

< 1,0,i,0,i,I,i,i,0,0,I,0,0,0,0,0,0,i,0,0,0,0,0,0,0 >
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TABLE 12. (Concluded)

Number

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Attribute Vector

< 0,0,i,i,i,i,0,0,0,0,0,i,0,0,0,0,0,I,0,0,0,0,0,0,0 >

< 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,i,0,0,0,0,0,0 >

< 1,0,i,0,i,i,I,i,0,I,0,0,0,0,0,0,0,i,0,0,0,0,0,0,0 >

< i,I,i,i,i,i,0,I,i,i,0,0,0,0,0,0,0,i,0,0,0,0,0,0,0 >

< 1,0,i,i,i,i,0,0,0,0,i,0,0,0,0,0,0,0,0,0,0,0,0,0,0 >

< 1,0,i,0,i,I,0,0,0,0,I,0,0,0,0,0,0,0,0,0,0,0,0,0,0 >

< I,I,i,i,i,i,0,i,i,0,I,0,0,0,0,0,0,i,0,0,0,0,0,0,0 >

< I,i,i,i,i,I,i,I,I,0,I,0,0,0,0,0,0,i,0,0,0,0,0,0,0 >

< i,i,i,i,i,i,i,i,i,0,i,0,0,0,0,0,0,i,0,0,0,0,0,0,0 >

< 1,0,i,0,i,i,0,0,0,i,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 >

< 0,0,0,0,i,i,0,0,0,0,0,0,0,0,0,0,i,0,0,0,0,0,0,0,0 >

< I,i,i,i,i,i,0,i,i,I,0,0,0,0,0,0,0,i,0,0,0,0,0,0,0 >

< 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,i,0,0,0,0,0,0 >

< 1,0,i,i,i,i,0,0,0,i,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 >

< 1,0,i,0,i,i,0,0,0,0,i,0,0,0,0,0,0,0,0,0,0,0,0,0,0 >

< 1,0,i,0,I,I,0,0,0,0,0,0,0,0,0,0,0,0,0,0,I,0,i,0,0 >

< 1,0,i,0,i,i,0,0,0,I,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 >

< 1,0,i,0,i,i,0,0,0,0,0,0,0,0,0,0,I,0,0,0,0,0,i,i,0 >

< i,i,I,0,i,i,0,0,0,0,0,0,0,I,0,0,0,0,0,0,0,0,0,0,0 >

< I,I,I,0,I,i,0,0,0,0,0,0,0,i,0,0,0,0,0,0,0,0,0,0,0 >

< I,i,i,0,I,i,0,0,0,0,0,0,0,i,0,0,0,0,0,0,0,0,0,0,0 >

< 0,0,i,i,i,i,0,0,0,0,0,i,0,0,0,0,0,i,0,0,0,0,0,0,0 >

< 1,0,i,0,i,I,0,0,0,0,0,0,0,0,0,i,0,0,0,0,0,0,0,0,I >

< 1,0,i,0,i,I,0,0,0,0,0,0,0,0,0,I,0,0,0,0,0,0,0,0,i >

< 1,0,I,0,i,i,0,0,0,0,0,0,0,0,0,0,I,0,0,0,0,i,0,0,i >

< 1,0,i,0,i,i,0,0,0,0,0,0,0,0,0,0,i,0,0,0,0,0,I,0,0 >
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x25 = <1,0,1,0,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0>

where an entry of 1 signifies that function is required at that interface and an entry
of 0 signifies that function is not required at that interface.

A common interface must provide the functions required of each of the unique

interfaces which it is to replace. Thus, if a function is required by any interface

in a cluster, it must be furnished to all interfaces within that cluster. The B func-

tion vector is then composed of maximum functions:

13 = < 61, 62 .... , 625 >

= < Max(u,v), Max(u,v) ..... Max(u,v) >

where for two real numbers u and v,

Max(u,v) = u if u _>y

= y otherwise

The mean attribute vector for a common interface to replace interfaces number 25 and
26 is then

= <1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0>_25

by equation (1). Since all interfaces are specified in a quantity of one, by equation
(3) the excess functionality a for a common berth is

23

iak j=l Xi'l k,l

where all C. = 1, since no data is available regarding the relative economic worth of
]

the respective functions. Thus, the excess functionality which results from develop-
ing a common interface to replace interfaces number 25 and 26 is

a25 : [(11-11) + [(IO-ll)J + ... + <1o-ol)]

+ [(11-11) + [(11-11) + ... + (Io-ol)J : 4
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In order to make two unique interfaces common, at least one of the two will
have to be changed. Typically, this change is in the form of providing some func-
tions which are not necessary for one or both interfaces. These extra functions may
manifest themselves by increasing interface weight, decreasing the clearance between
connectors in the interface, and changing the physical size of the interface. On the
other hand, the benefits of having to design and develop fewer interfaces may well
outweigh these costs.

Because this is a Conceptual Design study, few specifics are known regarding
design parameters and economic impact associated with the individual functions. The
main objective of this commonality analysis is to establish whether there is enough
commonality present among the interfaces to make the common berthing interface con-
cept feasible and, if so, to make a preliminary definition. For these reasons, a
simple objective function may be employed - one in which fl(n,s) is linear in n. Let

Z(n,s) = K.n + s

be the objective function to be minimized where K is the maximum number of excess
functions which may be incurred in order to reduce the number of interfaces by one.
While an economic worth assessment could be performed to determine K, a standard
procedure in conceptual design studies is to vary controlling parameters over a range
to examine the sensitivity of the solution. Therefore, K will be varied over the
range from zero up to that level required for all interfaces to be replaced by a single
common interfaee.

The commonality analysis methodology developed in Section III and IV was

applied to the berthing interface data given in Table ll. A dendogram depicting the
hierarchical clustering of the berthing interfaces is given in Figure I. The vertical
line shown at K=30 defines the hierarchical clustering solution at that point. The
partition defined by K=30 consists of five eommon berthing interfaces and is given in
Table 13. This partition was used as the initial partition for the switching algorithm,
and the switching algorithm identified two changes which improved the solution. For
K=30, the value of the objective function was reduced to -1131 from -1129 by making
these switches. The final clustering solution for K=30 is given in Table 14 with the
two changes from Table 13 being underscored. Other partitions defined by other

values of K may be used as the initial partition for the switching algorithm. For
instance, at K=I0, the switching algorithm makes no changes and at K=20, the switch-
ing algorithm makes two changes, reducing the objective function to -711 from -707.

A graph depicting the total excess functionality S versus the number of berth-
ing interfaces N is given in Figure 2. The values for S were taken from the results
of the hierarchical clustering portion of the clustering method. Since the switching
algorithm made so few ehanges to the hierarchically formed partitions for K=I0, 20,
and 30, and had an insignificant impact on the value of the objective function, the
hierarchically formed partitions should represent a very good approximation to a
minimal value of S. Note from Figure 2 that the number of interfaces can be reduced
from 48 to 13 while only incurring a total of 46 excess functions. Thus, at a price
of one extra function per berth on average, the number of berths which must be
developed is reduced by a factor of four. Likewise, at a price of two extra functions

per berth on average, the number of berths which must be developed is eight - a

reduction by a factor of six. If the number of berths is reduced to five, just over
three extra functions per berth on average is required. It is these five common
berths which are given in Table 14.
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Figure i. Hierarchical clustering of berthing interfaces.
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TABLE 13. HIERARCHICALLY FORMED PARTITION (K=30)

Partition Functions Required

1,8,9,10

12,14,27

28,37

<i, I, I, i, I, i, I, 0,0,0, i, 0,0,0,0,0,0,0,0, i, 0,0,0,0,0>

2,3,4,5

6,15,20

21,22,25

26,29,30

31,34

<i, i, i, i, i, i, i, i, i, i, I, 0,0,0,0,0,0, i, 0,0,0,0,0,0,0>

7,11,17

23,32,36

39,44

13,16,18

19,24,35

41,42,43

<i, i, i, i, i, i, 0,0,0, i, 0, i, 0,0,0,0,0, I, 0,0,0,0,0,0,0>

<i,i,I,0,i,i,0,0,0,0,0,0,0,i,i,0,0,0,I,0,0,0,0,0,0>

33,38,40

45,46,47

48

<i,0,i,0,i,I,0,0,0,0,0,0,0,0,0,i,i,0,0,0,i,i,i,i,i>
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TABLE 14. FINAL CLUSTERING SOLUTION (K=30)

Partition Functions Required

1,8,9,10 <i,i,i,i,i,i,i,0,0,0,I,0,0,0,0,0,0,0,0,i,0,0,0,0,0>

27,28,37

2,3,4,5

6,15,20

21,22,25

26,29,30

31,34

<i, i, i, I, i, I, i, i, i, i, I, 0,0,0,0, O, O, i, 0,0,0,0,0,0,0>

7,11,17

23,32,36

39,44

<1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0>

I__2,13,1_44 <i,i,i,0,i,I,0,0,0,0,0,0,0,i,i,0,0,0,i,0,0,0,0,0,0>

16,18,19

24,35,41

42,43

33,38,40

45,46,47

48

<i,0,i,0,I,I,0,0,0,0,0,0,0,0,0,I,i,0,0,0,i,i,i,i,i>
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Figure 2. Variation of excess functionality with number of berths.

While further economic and technical data would be required to reach a defini-

tive conclusion regarding the specification of common berthing interfaces, the poten-
tial for developing a small family of common interfaces appears excellent. Data needed
to support further studies includes the relative costs of the 27 functions (they were
assumed to be equal in this study) and the development cost of a module berthing
interface. Since conclusions regarding the specification of common interfaces are not

yet required, there is no justification to attempt to verify the optimality of the solu-
tion. However, optimality considerations would be required of follow-on studies,

particularly commonality analyses during Detail Design which address design specifica-
tion of the module berthing interface. The computer programs used for this common-

ality analysis are listed in Appendix B.

E. The Role of Commonality Analysis in Preliminary Design

During the Preliminary Design phase of a system, several candidate system con-
cepts are studied further and one candidate system is selected as optimal. This
selected concept is then further studied and optimized to permit definitive specifica-

tion of the system. Prior to concept selection, the application of commonality is
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analogous to that in Conceptual Design. However, since some additional definition of
the concepts take place, the likelihood of identifying cost effective commonality appli-
cations increases.

After concept selection, commonality may be pursued to lower levels of defini-
tion. The subsystem configuration has been defined and the design effort begins to
center on more detailed study of subsystem components. Data may be collected on
the functional requirements of frequently used components such as electric motors,
digital control units, power conditioners, structural supports, etc., and a plethora
of interfaces. While the quality of the data may not support the definitive identifica-
tion of an optimal solution, trends and gudielines may be identified for further study
during Detail Design [29].

The commonmodule definition study referenced in Section I is this type of
commonality analysis. After the reference configuration of the space station was
selected, this commonality study addressed the definition of a commonmodule to serve
as a building block for the five modules in the configuration [4]. This commonality
analysis illustrated the feasibility and cost effectiveness of the common module approach
as well as providing preliminary recommendations regarding the makeup of this common
module.

Another such study addressed the development of common interfaces for the
space station equipment rack [26]. After selection of a reference space station con-
figuration, the nature of the module interior architecture was investigated. In a
study very similar in concept to the common berthing interface study previously dis-
cussed, it was determined that the 44 unique rack utility interfaces in the space
station laboratory module could be replaced by ten commonutility interfaces. Since
this commonality analysis was based on Preliminary Design data, the conclusion of ten
commonutility interfaces is necessarily preliminary as well. The conclusion drawn
from the study was that common rack utility interfaces are cost effective, with the
exact composition of the interfaces to be determined during Detail Design.

The Preliminary Design phase culminates in a definitive system specification.
The functions and performance levels of the subsystem components have been estab-
lished. While the nuts and bolts have not been specified, the basic approaches for
the construction of all hardware and software are understood. Since the cost effec-
tiveness of commonality is dependent upon functional similarity and the functions of
all hardware and software have been established, those areas where commonality should
be applied can be identified during Preliminary Design. Detail Design data will be
needed to determine the exact nature of the commonality application and, in borderline
cases, to determine the economic feasibility. Still, most commonality applications
should be identified by the conclusion of Preliminary Design. The Systems Design
Review should address specific recommendations for the development of common items
based on the preliminary commonality analyses [21].

F. Commonality Analysis of Electric Motors (Part i)

The scope and objectives of commonality analysis in Preliminary Design are much
the same as in Conceptual Design. The principle difference is the kind of items
addressed in each; in Conceptual Design, concentration is at the subsystem level
while in Preliminary Design, commonality of lower level items such as electric motors
may be addressed. Consider the listing of electric motors given in Table 15. These
motors were identified during the Preliminary Design activity of the space station pro-
gram. These motors are used to power fans, pumps, actuate valves and dampers,
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TABLE 15. PRELIMINARY DESIGN DATA FOR

ELECTRIC MOTORS

Motor Quantity Power (watts)

1 12 3.5

2 4 6.6

3 22 6.5

4 4 6.8

5 2 7.8

6 8 i0.0

7 2 20.0

8 12 32.0

9 4 68.0

10 1 280.0

ii 7 250.0

12 4 300.0

13 2 285.0

14 5 350.0

15 6 510.0

16 8 200.0

17 4 98.0

18 8 80.0

19 4 79.9

20 8 67.0

21 22 66.0

22 22 13.0

23 24 12.5

and other applications. As in the tankage example in Section IV, the feasibility rela-
tion is one of size; it is feasible to use a larger motor instead of a smaller motor.

Where commonality between two motors is sought, the design characteristics of the
motor with the larger power requirement become those of a common motor.

The commonality analysis methodology developed in Sections III and IV was

applied to the electric motor data given in Table 15. A linear objective function of
the form

Z(n,s) = K-n + s
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was employed. A dendogram depicting the hierarchical clustering of the electric

motors is given in Figure 3. The partition defined at K=300 consists of nine types

of motors and is given in Table 16. This partition was used as the initial partition

for the switching algorithm, which made no changes. Thus, the hierarchically

derived partition given in Table 16 is also the final clustering solution. The value

of the objective function at K=300 is 15,862.
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Figure 3. Hierarchical clustering of electric motors.
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TABLE 16.

Partition

HIERARCHICALLY FORMED PARTITION (K=300)

Total Quantity Power (watts)

1,2,3,4,5,6,22,23 98 13.0

7,8 14 32.0

9,20,21 34 68.0

10,12,13 7 300.0

ii 7 250.0

14 5 350.0

15 6 510.0

16 8 200.0

17,18,19 16 98.0

A graph depicting the total excess functionality S versus the number of dif-

ferent types of motors N is given in Figure 4. Recall that in this case, S defines

the extra power requirements of the oversized motors used in common applications.
From Figure 3, it is noted that at K=40, 13 different types of motors are required.
From Figure 4, it may be noted that the excess power required to reduce the number

of different types of motors from 23 to 13 is 134. Thus, for an increased power
allocation of less than 1 percent, the number of different types of motors which must

be developed is almost cut in half. Likewise, at K=300, the reduciton to nine types
of motors requires an extra 700 W of power, an increase of 5 percent. If the power
allocation for electric motors can be increased by I0 percent, the number of motors

which must be developed can be reduced to 7; at K=510, the 7 types of motors
require an extra 1,550 W.

Further economic and technical data will be required to specify the exact nature
of the commonality solution. However, since the number of different types of motors
may be reduced significantly with marginal increases in power consumption, the
feasibility of commonality is established. In regard to a preliminary definition of the
commonality solution, the partitions given in Table 16 indicate that the smaller motors
tend to be clustered, whereas the larger motors do not. Of course, this is attribut-

able to the more substantial power requirement penalties which accompany making the
larger motors common. Still, this study treated equally the cost savings due to
making any motor common, and it is quite likely that the cost savings of making
larger motors common would be proportionally greater than for smaller motors. This
issue and others, including optimality considerations, will be addressed in the com-
monality analysis of electric motors performed during Detail Design. The computer
programs used for this commonality analysis are listed in Appendix B.
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G. The Role of Commonality Analysis in Detail Design

The functional specification and systems requirements developed during Pre-
liminary Design evolve into manufacturing drawings and plans during the Detail Design
phase. During this process, functional definition and allocation to the lowest levels
marks the completion of the system analysis activity. The development of detailed
specifications for manufacturing represents the integration of nuts and bolts into
parts, parts into components, components into subsystems and so on to construct the
system. The Detail Design activity for a commonitem does not differ from the Detail
Design for any other item. The lone distinction of a common item from the design
standpoint is that, in general, it must satisfy a broader range of functional require-
ments [31]. Thus, the role of commonality analysis in Detail Design consists of
identifying the common items and their respective functional requirements. Once this
task has been performed, commonality analysis is, in essence, complete.

The commonality analysis process in the early part of the Detail Design phase
is analogous to that of Preliminary Design. As functional definition progresses to
successively lower levels, additional commonality applications may be identified. By
the completion of the system analysis activity, all information needed for the identifica-
tion of commonality applications is complete and, hence, all commonality applications
should have been identified. With the beginning of detailed specification development,
data will become available permitting the exact nature of the previously identified
commonality applications to be ascertained. Specific objective functions may be
formualted using cost relationships such as those employed by the System Commonality
Analysis Tool, discussed in Section II, with enough precision to permit the identifica-
tion of optimal solutions.

Since the Equipment Design Review is scheduled near the beginning of the
detailed specification development activity (shortly after the completion of system
analysis), it can serve as a milestone for the commonality analysis activity. At this
review, all commonality applications recommended for the program should be addressed.
Subsequently developed detailed data will permit the exact specification of common
items, and this activity should be completed with results addressed at the next
milestone -- the Critical Design Review. The system design is baselined at the
Critical Design Review, and ideally the commonality analysis activity should be com-
pleted shortly after this review [31]. However, occasionally changes to the design
baseline are necessary, and if these changes affect common items, a revised com-
monality analysis is requried [32]. A design change for an application using a
common item has the potential to affect the overall requirements for the common item
itself and thus alter the cost effectiveness. This revised commonality analysis will
define a revised optimal commonality solution in light of the design change.

In summary, the role of commonality analysis during Detail Design is initially
one of extending the identification of commonality alternatives begun during Preliminary
Design. The subsequent and final activity in commonality analysis utilizes the evolv-
ing Detail Design data to determine the optimal implementation of commonality in each
of the previously identified areas. Commonality analysis for a system is completed
during Detail Design and no new activities are required in the subsequent Development
phase; revisions to commonality analyses will be required when downstream design
changes affect common items.
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H. Commonality Analysis of Electric Motors (Part 2)

Recall the previous example of a Preliminary Design commonality analysis of
electric motors for the space station. The space station program is currently in the
early stages of Detail Design, and the data given in Table 17 has become available
for the electric motor applications aboard the space station. Note that in comparison
to Table 15, data is now available specifying the weight, volume, estimated R&D cost,
and estimated unit production cost. Note also that there are now 27 different types

of motors rather than 23 as before. In commonality analysis during Conceptual and
Preliminary Design, the primary objective was to establish the feasibility of common-
ality with a secondary emphasis upon preliminary definition of a commonality solution.
Now, with this additional oconomic and technical data, the objective of this common-
ality analysis is to provide specific recommendations regarding which motors should
be developed in common.

The commonality analysis methodology developed in Sections III and IV was

applied to the electric motor data given in Table 17. An objective function similar
to that used in the ECLS Water Tankage example presented in Section IV was
employed •

n QNk

E jln(LC/100)/ln(2)] + s + C
Z(n,s) = k=lE [_k,4- _k,5 j=l

where

M

c(x 0Ni , QN k = E QN i ,
iEk

and LC is the rate of learning.

The principle difference between this objective function and that used in the

ECLS Water Tankage example is the incorporation of a production learning curve in
this example. The hierarchically derived clustering solution is given in Table 18.
This partition served as the initial partition for the switching portion of the clustering
algorithm, which made no changes. Thus, the hierarchically derived partition given
in Table 18 is also the final clustering solution. The value of the objective function
for the partition defining the final clustering solution is 3417.34, a net reduction of
640.34 - approximately 15 percent - compared to the "no commonality" option. As
in the Preliminary Design commonality analysis, the clustering occurs principally among
the smaller motors.

The value of the objective function for various levels of commonality is depicted
in Figure 5. This graph was constructed using results of the hierarchical clustering
procedure, which was allowed to continue execution beyond the minimal value obtained
for 14 clusters. The hierarchical partitions are being used as approximations to

Z-minimal partitions. Note from Figure 5 that the objective function begins to increase

rapidly for fewer than ten clusters, indicating that the excess functionality incurred
grows very large. Thus, whereas in Phase B the possibility of as few as seven dif-

ferent types of motors was entertained, it has now been established that this level of

commonality actually increases system cost.
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TABLE 17. DETAIL DESIGN DATA FOR ELECTRIC MOTORS

Motor

1

2

3

4

5

6

7

8

9

I0

Ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Quantity Power Weight Volume R&D Cost

(watts) (ibs) (ft3) ($K)

12 3.5 0.350 0.004 18.32

4 6.6 0.554 0.006 24.83

22 6.5 0.012 0.001 26.80

4 6.8 0.517 0.006 23.72

2 7.8 0.679 0.008 28.41

8 i0.0 0.600 0.007 26.17

2 20.0 1.120 0.013 39.56

3 32.0 1.408 0.016 46.02

9 32.0 1.344 0.015 44.63

4 68.0 2.448 0.028 66.36

1 280.0 5.880 0.068 118.49

7 250.0 3.500 0.041 84.06

4 300.0 4.200 0.049 94.84

2 285.0 3.705 0.043 87.29

5 350.0 4.900 0.057 105.02

4 510.0 5.865 0.068 118.29

2 510.0 5.610 0.065 114.86

4 200.0 1.800 0.021 54.14

4 98.0 0.960 0.011 35.72

8 80.0 0.800 0.009 31.66

4 79.0 0.869 0.010 33.44

8 67.0 0.804 0.009 31.77

22 66.0 0.858 0.010 33.16

22 13.0 0.351 0.004 18.36

2 12.5 0.400 0.005 20.02

22 12.5 0.425 0.005 20.84

4 200.0 1.400 0.016 45.85

Prod Cost

($K/unit)

8.71

11.80

12.73

11.27

13.50

12.44

18.80

21.87

21.21

31.53

56.31

39.95

45.07

41.48

49.91

56.21

54.58

25.73

16.98

15.05

15.89

15.10

15.76

8.72

9.51

9.90

21.79
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TABLE 18. HIERARCHICALLY FORMED PARTITION

Partition Quantity

1 12

2,4,5,6 18

3 22

7,8,9 14

i0 4

11,15 6

12 7

13,14 6

16,17 6

18,27 8

19 4

20,21 12

22,23 30

24,25,26 46

Attribute Vector

< 3.5, 0.35, 0.004, 18.32, 8.71 >

< i0.0, 0.68, 0.008, 28.41, 13.50 >

< 6.5, 0.01, 0.001, 26.80 12.73 >

< 32.0, 1.41, 0.016, 46.02 21.87 >

< 68.0, 2.45, 0.028, 66.36 31.53 >

< 350.0, 5.88, 0.068, 118.49 56.31 >

< 250.0, 3.50, 0.041, 84.06 39.95 >

< 300.0, 4.20, 0.049, 94.84 45.07 >

< 510.0, 5.86, 0.068, 118.29 56.21 >

< 200.0, 1.80, 0.021, 54.14 25.73 >

< 98.0, 0.96, 0.011, 35.72 16.98 >

< 80.0, 0.87, 0.010, 33.44 15.89 >

< 67.0, 0.86, 0.010, 33.16, 15.76 >

< 13.0, 0.42, 0.005, 20.84, 9.90 >

5O

Z(N,S)

5,500

5,000

4,500

4,000

3,500

3,400

o

i 1 I L i I

10 14 15 20 25 27

NUMBER OF DIFFERENT TYPES OF MOTORS N

Figure 5. Cost benefit of various levels of commonality.
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The clustering solution given in Table 18 cannot be verified as a Z-minimal

partition. Unfortunately, such a large number of the sufficiency inequalities are

violated for the commonality solution that it is not possible to enumerate all possible

partitions, and thus the commonality solution may not be verified as Z-minimal. Since
it is not possible to identify a Z-minimal partition for N=14, the optimal solution cannot

be identified. A description of the application of the Z-minimal sufficient conditions

to the partition of Table 18 is given in Appendix C.

The final clustering solution is comprised of 14 different types of motors.

However, it must be noted that if research and development costs were revised upward

in a subsequent commonality analysis cost update, a commonality solution of fewer

different types of motors would be the result. Likewise, if the weight, volume, and

power parameters are revised upward, more different types of motors will be speci-

fied in the commonality solution. While the partition given in Table 18 does represent

a definitive commonality solution, this commonality analysis would require revision as
further data - such as duty cycle and mean time between failure -- becomes available

and as a result of changes in existing motor specifications and cost estimates. How-

ever, any revision would be of the same genre as this commonality analysis. While

this commonality analysis differed markedly from the Phase B commonality analysis
presented earlier, revisions to this commonality analysis would differ mainly in number
of attributes. The computer programs used for this commonality analysis are listed

in Appendix B.

VI. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

The purpose of the research documented in the previous chapters was the
creation of a commonality analysis methodology. By formulating commonality analysis

as a partitioning problem, clustering techniques may be applied. The use of cluster-
ing techniques allows solution to commonality analysis problems by a means other than
complete enumeration, which is not feasible in most commonality analyses. The
optimality of the clustering solution may be verified using the sufficiency conditions
developed in Section IV.

In summary, three conclusions are drawn from previous discussion:

i) The methodology is adaptable to the requirements of commonality analysis

within each of the design phases in the system development cycle.

2) The hierarchical clustering portion of the methodology appears to give very

good results and in general provides an excellent approximation to Z-minimal parti-
tions. In the commonality analysis problems used for examples, the switching portion

of the algorithm made zero or few changes to the hierarchically derived partition and

had a negligible impact on the value of the objective function. Where the Z-minimal

sufficient conditions could be successfully applied, the hierarchical partitions were

verified as Z-minimal partitions.

3) The sufficient conditions developed to verify Z-minimal partitions are not

in general met by Z-minimal partitions. However, in some cases they may be used to

pare the solution space to a number of alternatives for which enumeration may be

practically employed. While this technique is laborious, it can represent a substitute

for complete enumeration, which is generally not feasible.
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The methodology developed and illustrated in the preceding chapters represents
an initial step toward the definition of a generalized commonality analysis methodology.
The clustering techniques employed in this methodology are well established and
general in scope. The straightforward application of this methodology to representa-
tive commonality analyses from the various system design phases indicates a broad
range of application. Rather than simply providing a definitive solution for a par-
ticular type of problem, the successful development and application of this methodology
shows the utility of the clustering approach for commonality analysis problems in
general.

B. Recommendations

As discussed in the previous section, the hierarchical clustering technique
appears to produce good approximations to Z-minimal partitions in general. Since the
data on which even phase C/D commonality analyses are based is preliminary and
thus subject to change, the nature of the optimal solution is likewise subject to
change. For aerospace systems in particular, the specifications and cost estimates
are not concrete until the item is delivered to the customer. Thus, the effort
involved in implementing the switching techniques and verifying the solution using
Z-minimal sufficient conditions may not be warranted. Further study on how well
the hierarchically derived partitions approximate Z-minimal partitions for typical
commonality analysis problems is needed to support any conclusion in this area.

In this research, concentration has been focused on arriving at the optimal
solution, where the optimal solution is that partition producing the minimum value of
the objective function. Due to the uncertainty inherent in commonality analysis data,
the optimal solution may need to be defined in another manner. Rather than pro-
ducing the minimum value of the objective function, an optimal solution could be
defined as that partition producing a near minimum value of the objective function but
somewhat insensitive to fluctuations in the commonality analysis data. If an optimal
solution is defined in this manner, the likelihood of data revisions affecting the com-
monality solution would be decreased. A study addressing the weighting of proximity
to the minimum value of the objective function versus degree of robustness of the
partition is needed to support any conclusion in this area.

Finally, recall that the principle objective during Phase A and Phase B com-
monality analyses is to establish the feasibility of commonality. In general, these
studies are parametric in nature in that the feasibility of commonality depends upon
one or more parameters such as excess power or additional functions. While figures
such as dendograms and plots are useful devices for depicting how commonality varies
with parameters, the feasibility of commonality must still be deduced. One potential
method for defining the feasibility of commonality would be to develop a statistical
measure to estimate the likelihood of commonality for various values of a parameter.
This statistic would be analogous to existing measures in cluster analysis which are
utilized to define the number of clusters which exist in a data set [33]. A study in
which the application of these methods to Phase A and Phase B commonality analysis
data sets is needed to support any conclusion in this area.

The three aforementioned studies are recommended as immediate extensions of
the research documented in this report. There are certainly others, such as the
development of more powerful and practical optimality conditions. However, the
outcomes of the preceding studies would have a definite impact on the scope of a
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study addressing optimality conditions. This dissertation represents one step, and
the above studies three more. After these, many steps will remain to be taken

before a methodology for commonality analysis is fully defined and integrated into the
system development process.

53





APPENDICES

PRECEDING PAGE BLANK NOT FILMED

1'_6N_._INTENTmNA, LLy8LA_

55





APPENDIX A. SELECTED PROOFS AND ILLUSTRATIONS

A. Monoticity Property of a

From Section IV, the excess functionality for a single cluster is given as

n m

0Ni{ cjxi  kj}x i E cluster k , i = 1,2,...,n

Given two items with attribute vectors -aX and Xb, the excess functionality aab is con-

stant for all possible values of -_ab" The excess functionality _ab is invariant to

feasible values of the mean attribute vector -_ab since

x< iJab , j_<y

where

x = Minimum{Xa,j, X_b,j }

y = Maximum{X_a,j , X_b, j}

and because the excess functionality a defined above is a summation of absolute dif-

ferences between items and the mean attribute vector -_ab" This invariance of a to

holds for any number of items in the cluster, where the relations x and y are
extended to include the attribute vectors of all items.

From the formulation of a above, the quantity ak is always nonnegative. For

two items a and b, aa and ab are zero. Consider the clustering of items a and b.
Let

aab = aa + ab + 6(a,b)

where 6 (a,b) is a real number. In this case, since oa and ab are zero, then

Oab = _i (a,b)

and thus 6 (a,b) is nonnegative since aab z O. Consider the addition of a third item

c to cluster ab, yielding the quantity aab c of excess functionality. Then

PRECEDING PAGE BLANK NOT FILMED
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aabc = gab + _c + 6 (c,ab)

= _ab + _(c,ab)

= 6(a,b) + _(c,ab)

where 6(c,ab) is a real number. Now,

x - > _a u-a _abc - - -ab

since the feasible values for _Uab c can include values not feasible for -_ab; likewise

for x b. Hence, if _ab denotes the excess functionality where -_abc is used as the

mean attribute vector, then

ab - _ab

Since the absolute deviation of x c to -_abc is at least zero, then

Oabc _ aab

and thus 5(c,ab) is also nonnegative. Likewise,

aabcd >-_abc

and

aabcd = 6(a,b) + 6(c,ab) + 5(d,abe)

and so on as additional items are included in the cluster. Thus, in general

gk = 6(u,v) + _(w,uv) + _t(y,uwv) + ...

for all items which are members of cluster k including items u, v, w, and y, where

all 6 are nonnegative. Therefore, the excess functionality will either remain the same

or increase with the incorporation of additional items into a cluster.
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B. Order Independence of a

From prior discussion, for four items a, b, c, and d, the excess functionality

aabcd = aab c + 6(d,abc)

= aab + 6(c,ab) + 6(d,abc)

= 6(a,b) + 6(c,ab) + 6(d,abe)

Also from prior discussion, o is invariant in p. From equation (2), the value of o

is dependent solely on the membership of a cluster. Then,

aabcd = Obc d + 6 (a,bcd)

= 6(b,c) + 6(d,bc) + 6(a.bcd)

= aacd + {S(b, acd)

= aab d + 6(c,abd)

and so on.

Since 6 (u,v) defines the increase in a which results from the addition of item v

to cluster u, then

6(u,v) = o -uv _u

For two clusters k and 1 each comprised of one or more items, since

and

then

_Ixi -_klI_ l__i-_kI

_lxi- -_k_[_Ixi- -_l I
id id

akl > % + oI
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Thus, 6 (k,l) may be used to define the increase in a which results from the merger

of any two clusters:

akl = ok + a1 + 6(k,1)

where _(k,l) _> 0. Then for four items a, b, c, and d,

aabcd= aab + acd + 6(ab,cd)

= 6(a,b) + 6(c,d) + _i(ab,cd)

= 5(a,c) + 6(b,d) + _(ac,bd)

= d(a,d) + d(b,c)+ _(ad,bc)

= 6(a,b) + 6(c,ab) + _(d,abc)

C. Lower Bound on Increase in Excess Functionality

If the three objects a, b, and c are then combined to form a single group

{[a,b,c] }, the value of the objective function is Zinit + D(a,b) + D(e,ab). As shown

earlier, the order in which members entered the cluster is of no consequence. Thus,
in the case of a cluster of three objects a, b, and c,

D(a,b) + D(c,ab) = D(a,c) + D(b,ac) = D(b,c) + D(a,bc)

Likewise, from previous discussion,

6(a,b) + _(c,ab) = 6(a,c) + _(b,ac) = 6(b,c) + 6(a,bc)

and since _ is nonnegative,

_i(a,b) + 6(c,ab) > Maximum{6(a,b), 6(a,c), 5(b,c)} (9)

From equations (4) and (9), a general expression for the minimum excess functionality
which results from the commonality of the items in a particular cluster may be given

as
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ak > Maximum{6 (u,v)} (10)

for all items u,v c cluster k. Using equations (5) and (9),

ak + a1 + 6(k,1) > Maximum{d(u,v)} (11)

for all items u,v which are members of either cluster k or cluster 1, may be used to
infer a lower bound on the increase in S and, hence, the change in the objective
function Z which results.

D. Proof of an S-Minimal Partition

Assume that the partition {(abc),(def),(ghij)} of ten objects into three groups
satisfies the following inequalities:

i. Oab c + Ode f < Minimum{5(a,d), 6(a,e) .... 6(c,f)}

2. Oab c + aghij < Minimum{6 (a,g), 6 (a,h), ... 6(c,j)}

3. Ode f + Oghij _< Minimum{6(d,g), 6(d,h) .... 6(f,j)}

in accordance with the sufficiency condition of equation (15) of Section IV. Without

loss of generality, let 6(a,e), 6(a,i), and 6(e,i) be the minimums in the preceding
ineq.Jalities.

Consider the switch of item e to cluster abc. Then

Oabce >Maximum{_(a,b), _(a,c), 6(a,e), ... 6(c,e)}

> 6 (a,e)

and, since 6 (a,e) > gabc + adef from inequality 1,

Oabce > Oab c + ade f •

Denote the excess functionality of this partition S'. Then

S I + -b
= Oabce °df °ghij

_> aab c + ade f + adf + oghij
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and, since _ghij is unchanged and _df is nonnegative,

S'_>S

Since 6(a,e) was the minimum, any other partition combining items of clusters abc
and def cannot reduce S. Likewise, partitions combining items of clusters abc and
ghij or of clusters def and ghij cannot reduce S. Next consider the switch of items
e and i to cluster abc. Now,

_abcei = _abc + 6 (e,i) + 6 (ei,abc) ,

and since 6 (e,i) _> _def + _ghij' then

_abcei -> _abc + °def + °ghij + _ (ei,abc) .

The excess functionality of this partition is

S v ÷ +
= _abcei _df _ghj

-> _abc + adef + _ghij + _(ei,abc) + adf + _ghj

Since 6(ei,abc), Odf , and _ghj are nonnegative, again

S'_>S

Likewise, any partition combining objects from all three clusters cannot reduce S.

E. Illustration of Bounds on

Let the research and development cost for item u be denoted R&D(u) and let

the manufacturing cost savings which result from the quantity of item u be denoted

MAN(u,QNu). Let manufacturing cost savings which result form making item u

common with item v be denoted MAN(u,QNu+QNv). For a cluster k formed from two

items u and v, the lower bound on the net cost savings, ak, for the cluster is
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Likewise,

[_i[ __ Maximum{R&D(i)} + Maximum{MAN(i,QN k)}

for all i _ k, is the maximum contribution of any one item toward _k" Thus, the

above equations define an upper bound on _i and a lower bound on _k' where the
items i comprise cluster k.

To illustrate the foregoing inequalities, consider the cost savings which result
from the merger of tanks 6 and 7 given in Table 2. Recall from two examples in

Section IV that D(6,7) = -36 while _6,7 = 10. No learning curve was assumed in the

production of tanks, so MAN(i,QN i) is zero for all tanks and the sole source of cost

savings is elimination of research and development activities. From Table 2,

x6, 3 = 49 and XT, 3 = 46

are the R&D costs for tanks 6 and 7, respectively. The cost to develop these tanks

separately is then x6, 3 + x7, 3 = 95. By equation (18), the cost savings which result

from the common tank are at least $46,000 since

[_kl _>Minimum{49,46} = 46 .

Likewise, the individual contributions of tank 6 and tank 7 toward this cost savings
are at most $49,000 since

Io,i[ < Maximum{49,46} = 49 .

Since the R&D cost from a previous example for the common tank, P6,3' is 49, the

cost savings which result from making tanks 6 and 7 common is

= -46 .ct6,7

Note that both of the above inequalities hold for _6,7"

F. Cost Impact of Switching Items Between Clusters

Given two clusters k and 1 each composed of two or more items, let an item u

be switched from cluster k to cluster 1. The maximum impact on fl(N,S) is then the
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maximum contribution of item u to _ minus the minimum remaining cost savings in
cluster k, chx:

a*(k) = [Maximum{R&D(u)} + Maximum{MAN(v,QN v + QN 1)}1

- [Minimum{R&D(w)} + Minimum{MAN(y,QNy)}]

for all u,v,w,y e cluster k. In general, for two clsuters k and 1 each composed of
two or more items,

a*(k) = [Maximum{R&D(u)} + Maximum{MAN(v,QN k + QNI)}]

- [Minimum{R&D(w)} + Minimum{MAN(y,QNy)}]

for all u,v,w,y e cluster k, is the maximum reduction in fl(N,S) which may be

incurred from switching one or more, up to n-l, items from cluster k to cluster 1.

If cluster k is composed of only one item, then a*(k) is zero since it is not possible
to switch an item from cluster k to another cluster without reducing N.
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APPENDIX B. COMPUTER PROGRAMS FOR COMMONALITY ANALYSIS

A. General

The following computer programs were used for the numerical commonality analy-
sis examples given in Sections IV and V. Both programs are written in Turbo Pascal
for execution on an IBM Personal Computer. The first program implements the
hierarchical clustering portion of the commonality analysis methodology, and the second
program implements the switching portion. In this case, the programs are set up for
the final example, "Commonality Analysis of Electrical Motors (Part 2)." The programs
may be adapted to the other numerical examples by changing the constants and the
function Distance. The program outputs are given following the program listings.

B. Hierarchical Clustering Program

program commonality;

uses printer, crt;

[ This program pares the commonality solution space by

employing hierarchlcal clustering methods.}

const

K := 0.0;

NumItems = 27;

NumAtts _ 5;

LC = 0.85;

[constants)

[weighting if linear objective function)

{number of dlfferent sizes of motors}

[number of attributes for each motor)

[85% learning curve}

type

Data - string;
DataFile - text;

Attarray - array[ 1..NumAtts] of real ;

ShStrlng - string[ 35 ];
DataRecord = record

Mnum : Data;

Mquan : integer;

Hspecs : Attarray;
end;

DataArray = array[ I..Numltems] of DataRecord;

similarityMatrix = array [1.. Numltems, 0.. 8 ] of real;

DisArray = array[ 1.. 2,1.. 8 ] of real ; {8=NumAtts+3 }
Partition = record

PartArray: array[ 1.. NumItems] of integer;

end;

var
SimMatrix

MotorNum

MotorQuan

MotorSpecs
I,J,II,NumClus

Flag

: SimilarityMatrix;

: ShString;

: integer;

: Attarray;

: integer;

: integer;
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Dist,Cost,LRN

Dfile,ComFile
DataLine

FileSpec
MotorData

MinDist

Mini,Mink
charv

Q,S,f
DisMat

: real;

: DataFile;

: Data;

: string[80];

: DataArray;
: real;

: integer;

: char;

: integer;

: DisArray;

procedure decode(Line : Data; var Mnum : ShString;

Var Mquan : integer; Var Mspecs :
Attarray);

{unpacks the ASCII text lines and loads variables per line }

vat

Darray

ShString; (NumAtts+2 }

I, J, code, Marker
V

dummy

: array[1..7] of

: integer;
: real;

: ShString;

begin J := 1; Marker := O;

for I :- 1 to length(Line) do
{identify substrings by comma separators}

if ((Line[I] = chr{44)) or (I = length(Line))) then

begin { unpack substrings }

if Line[I] = chr(44} then
Darray[J] := copy(Line,Marker+l,I-Marker-1)

else Darray[J] := copy(Line,Marker+l,I-Marker);

Marker := I;

.J := J + 1;

end;

Mnum := Darray[1]; {load variables}

val(Darray[2],Mquan,code);
for J := 3 to NumAtts+2 do

begin
dummy := Darray[J];

if dummy[length(dummy)] = chr(32) then
begin (write a '0' in Darray[J] if it has only blanks}

dummy[length(dummy)] := chr(48);

Darray[J] := dummy;
end;

val(Darray[J],V,code);
if code <> 0 then

begin
writeln('Decoding error in string location ',code);

writeln('of string ',J,' consisting of ',Darray[J]);

halt;
end

else Mspecs[J-2] := V;
end;

end;
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procedure getfile(FileSpec : string;

var MotorData : DataArray);

var

MotorNum

MotorQuan

MotorSpecs
I,J,Recnum
Dfile

Drecord

: ShString;

: integer;

: Attarray;

: integer;
: text;

: string;

begin

assign(Dfile, FileSpec);

reset(Dfile);

Recnum := 0; while not eof(Dfile) do

begin

Recnum := Recnum + I;

readln(Dfile,Drecord);

decode(Drecord, MotorNum, MotorQuan, MotorSpecs);

with MotorData[Recnum] do

begin
Mnum := MotorNum;

Mquan := MotorQuan;
for J := 1 to NumAtts do Mspecs[J] := MotorSpecs[J];

end;

end;

close(Dfile);

end;

function max(x,y:real):real;

begin

if x < y then max := y else max := x;

end;

function sigma(Dmat : DisArray) : real;

{ tally excess functionality to cluster I and J }

var

QNi,QNJ,sg
I

Maxi,Cj

: real;

: integer;

: array[l..NumAtts] of real;

begin

sg := 0.0;
QNi := Dmat[l,Q];

QNj := Dmat[2,Q] ;

Cj[I] := 0.5; {500 dollars per watt)

Cj[2] := 2.8; {2800 dollars per pound)

Cj[3] := i0.0; {i0,000 dollars per cubic foot)

Cj[4] := 0.0;
Cj[5] := 1.0;
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for I := 1 to NumAtts do Maxi[I]:=max(Dmat[l,I],Dmat[2,I]);
(define mean attribute vector above) for I := 1 to

NumAtts do

sg := sg + QNi*Cj[I]*(abs(Dmat[l,I] - Maxi[I]))
+ QNj*Cj[I]*(abs(Dmat[2,I] - Maxi[I])) ;

{sigma is increase in excess functionality)

sigma := sg;
end;

function alpha(Dmat : DisArray):real;

var

QNk,RD,Prod,LCS

I,QN,QNii,QNji

QNi,QNj,LCSi,LCSj

: real;

: integer;
: real;

begin

QNi := Dmat[l,Q]; QNii := round(QNi);

QNJ := Dmat[2,Q]; QNJi := round(QNj) ;

QNk := Dmat[l,Q] + Dmat[2,Q];
QN := round (QNk) ;

RD := Dmat[1,4] + Dmat[2,4] - max(Dmat[l,4],Dmat[2,4]);
LCSi := 0.0;

for I := 1 to QNii do LCSi := LCSi + exp(LRN*in(I));

LCSi := (QNi-LCSi)*Dmat[I,5];
(learning curve savings included in alpha i)

LCSj := 0.0;

for I := 1 to QNji do LCSj := LCSj + exp(LRN*in(I));

LCSj := (QNj-LCSJ)*Dmat[2,5];
{learning curve savings included in alpha j}

Prod := max_Dmat[l,5],Dmat[2,5]);
LCS := 0.0;

for I := 1 to QN do LCS := LCS + exp(LRN*ln(I));

alpha := -(RD + Prod*(QNk - LCS) - LCSi - LCSj);
(fI(N,S) is cost savings)

end;

function objective_function(Alf,Sig:real):real;

begin

objective_function := Alf + Sig;
end;

function Distance(Dmat : DisArray) : real;

(assesses the distance between clusters I and J}

var

Unique,Common,Alf,Sig : real;

begin Unique := objective_function(Dmat[l,f],Dmat[l,S])

+ objective_function(Dmat[2,f],Dmat[2,S]);

Alf := alpha(Dmat) + Dmat[l,f] + Dmat[2,f];

Sig := sigma(Dmat) + Dmat[l,S] + Dmat[2,S];
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Common := objective_function(Alf,Sig) ;

Distance := Common - Unique;
end;

procedure cluster(var Smat:SimilarityMatrix; Mk,Mi:integer);

{determines common motor specs of clusters I and J, then

removes row J from the similarity matrix by marking element

0 with I of row J and all members of cluster J}

var

I,J,II : integer;

Sij,Aij : real;

Dmat : DisArray;

begin
I := Mk; J := Mi;

for II := 1 to NumAtts do

begin

Dmat[1,II] :s Smat[I,II];
Dmat[2,II] :s Smat[J,II];

end; Dmat[l,Q] := Smat[I,Q];

Dmat[2,Q] := Smat[J,Q];

Sij := sigma(Dmat); {assess excess functionality}
Smat[I,S] := Smat[I,S]+Smat[J,S]+Sij; {sigma is cumulative}

Aij := alpha(Dmat);

Smat[I,f] := Smat[I,f]+Smat[J,f]+Aij; {alpha is cumulative}

Smat[J,0] := I; {mark element 0 of row J, thus removing it }

for II := 1 to NumItems do if Smat[II,0] = J then

Smat[II,0] := I; { mark members of J, now I )

Smat[I,Q] := Smat[I,Q] + Smat[J,Q];
{ total #_of tanks in cluster I-}

for II := 1 to.NumAtts do

Smat[I,II] := max(Smat[I,II],Smat[J,II]);{common spec set)

end;

procedure display(Smat : SimilarityMatrix; Cost: real;

var Flag : integer);

vat

I,J,C, II
Sfile

Pfile

Part

: integer;
: text;
: file of Partition;

: Partition;

begin

assign(Sfile,'comsol.dat'); rewrite(Sfile);

assign(Pfile,'hiersol.dat'); rewrite(Pfile);

Flag := i;

writeln(Sfile,'** HIERARCHICAL SOLUTION **');

writeln(Sfile);
C := 0;

for I := 1 to NumItems do if

Smat[I,0] = 0 then C := C + 1;
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'Solution composed of ' C ' groups.'writeln (Sfile, , , ,

' Net cost impact is ',Cost,'.') ;

writeln (Sfile) ;

C := i;

for I := 1 to NumItems do if Stoat[I,0] = 0 then

begin

for II := i to NumItems do Part.PartArray[II] := O;

II := I;

'Group ' C ' members: ') ;write (Sfile, , ,

write(Sfile,I, ' ') ;

Part.PartArray[II] := I;

for J := i to NumItems do if Smat[J,O] = I then

begin

write(Sfile,J, ' ') ;

II := II + I;

Part. PartArray[II] := J;

end;

writeln(Sfile) ;

write(Sfile,'Common specs < ') ;

for J := 1 to NumAtts do write(Sfile,Smat[I,J]:8:2,'

writeln(Sfile,'>') ;
• ' motors in cluster');writeln(Sfile, Smat[I,Q] .8 :2,

C := C + i;

writeln(Sfile) ; writeln(Sfile) ;

write (Pfile, Part) ;

end; close(Sfile); close(Pfile); end;

,);

BEGIN

Flag := 0;

Cost := 4057.68; (Total "no commonality" cost)

Q := NumAtts + i; {vector location of motor quantity)

S := NumAtts + 2; (vector location of excess functionality)

f := NumAtts + 3; (vector location of motor cost savings)

LRN := In(LC)*l.4427;(learning curve exponent = In(LC)/in(2))

assign(ComFile,'commtr.dat'); rewrite(ComFile);

getfile('motorcd.dat',MotorData);

(for I := 1 to NumItems do with MotorData[I] do

begin

write(Mnum,' ',Mquan:2,' < ');

for J := 1 to NumAtts do write(Mspecs[J]:8:3);

write(' >');

chary := readkey; writeln;

end;} for I := 1 to NumItems do

begin (load working data matrix)

for J:=l to NumAtts do

SimMatrix[I,J]:=MotorData[I].Mspecs[J];

SimMatrix[I,Q] := MotorData[I].Mquan;

(number of Motors per cluster)

SimMatrix[I,O] := O;

(no motor is a member of another cluster}

SimMatrix[I,S] := 0;(sigma is zero per cluster initially)

SimMatrix[I,f] := 0;(alpha is zero per cluster initially}

end; NumClus := NumItems; (initially Numitems clusters}
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_[hile NumClus > 1 do

begin

MinDist := 1.0E30;

for II := 1 to (NumItems - i) do

begin

if SimMatrix[II,0] = 0 then

begin (compute triangular similarity matrix}

for J := 1 to (NumAtts+3) do

DisMat[l,J] :s SimMatrix[II,J];

for I := (II+l) to NumItems do

begin
if SimMatrix[I,O] = 0 then

begin
for J := 1 to (NumAtts+3) do

DisMat[2,J] := SimMatrix[I,J];
Dist := Distance(DisMat);
if Dist < MinDist then

begin
MinDist := Dist;

Mink := II;

Mini := I;

end;

end;

end;

end;

end;
Cost := Cost + MinDist;

if (Flag=O) and (MinDist > 0) then

Display(SimMatrix,(Cost-MinDist),Flag);

cluster(SimMatrix,Mink,Mini);
NumClus := NumClus - i;

writeln('Join cluster ',Mini,' to cluster ',Mink,
' at a distance of ',MinDist:8:2);

write('Common specs < ');
for J := 1 to NumAtts do

write(SimMatrix[Mink,J]:8:3,' ');

writeln('>');
writeln(SimMatrix[Mink,Q]:3:0,' motors in cluster');

writeln('Net cost impact (cumulative) = ',Cost:10:2);

writeln(ComFile,'Join cluster ',Mini,' to cluster ',Mink,
' at a distance of ',MinDist:8:2);

write(ComFile,'Common specs < ');
for J := 1 to NumAtts do

write(ComFile,SimMatrix[Mink,J]:8:3,' ');

writeln(ComFile,'>');

writeln(ComFile,SimMatrix[Mink,Q]:3:0,

' motors in cluster');

writeln(Comfile,'Net cost impact (cumulative) = ',

Cost:10:2);

writeln(ComFile);

{ write(' Press enter to continue =>');
chary := readkey;} { press key to continue}

writein;

writeln;

end;

close(ComFile);
END.
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C. Switching Program

program optimize;

uses printer, crt;

( This program attempts to improve on the hierarchcial
clustering solution by evaluating possible switches between

existing clusters. The partitioning data is input from the

file HIERSOL. DAT. }

( $M 64000,0,655360}

const

K = 0.0;

NumItems = 27;

NumAtts = 5;

LC = 0.85;

{constants}

{K used for linear objective function}

{number of different sizes of motors}

{number of attributes for each motor}

{85% learning curve}

type
Data = string;
DataFile = text;

Attarray = array[1..NumAtts] of real;

ShString = string[35];
DataRecord = record

Mnum : Data;

Mquan : integer;

Mspecs : Attarray;
end;

DataArray = array[1..NumItems] of DataRecord;

SimilarityMatrix = array[1..NumItems,0..8] of real;

DisArray = array[l..2,1..8] of real; {8=NumAtts+3}
Partition = record

PartArray:array[l..NumItems] of integer;

end;

PartitionMatrix = array[1..NumItems,1..NumItems]

of Integer;

var
SimMatrix

MotorNum

MotorQuan

MotorSpecs

I,J,II,NumClus
NumMotor,C

Flag,P,L,M
Dist,Cost,NetCost

Dfile,ComFile
DataLine

FileSpec
MotorData

: SimilarityMatrix;

: ShString;

: integer;

: Attarray;

: integer;

: integer;

: integer;
: real;

: DataFile;

: Data;

: string[80];

: DataArray;
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MinCost
Mini, Mink
chary

Q,S,f
DisMat

Part

Pfile,Ofile

Pmat, MinMat

NumChanges
LRN

: real;

: integer;
: char;

: integer;

: DisArray;
: Partition;

: file of Partition;

: PartitionMatrix;

: integer;
: real;

procedure decode(Line : Data; var Mnum : ShString;

Var Mquan:integer; var Mspecs : Attarray);

{unpacks the ASCII text lines and loads variables per line }

var

Darray

I,J,code,Marker
V

dummy

: array[l..7] of ShString;{NumAtts+2)

: integer;

: real;

: ShString;

begin
J := i; Marker := 0;

for I := 1 to length(Line) do

{identify substrings by comma separators}

if ((Line[I] = chr(44)) or (I = length(Line))) then

begin { unpack substrings }

if Line[I] = chr(44} then
Darray[J] := copy(Line,Marker+l,I-Marker-l)

else Darray[J] := copy(Line,Marker+l,I-Marker);

Marker := I;

J := J + i;

end;

Mnum := Darray[l]; {load variables}

val(Darray[2],Mquan,code);
for J := 3 to NumAtts+2 do

begin

dummy := Darray[J];

if dummy[length(dummy)] = chr(32} then
begin {write a '0' in Darray[J] if it has only blanks}

dummy[length(dummy)] := chr(48);

Darray[J] := dummy;
end;

val(Darray[J],V, code};
if code <> 0 then

begin

writeln('Decoding error in string location ',code);

writeln('of string ',J,' consisting of ',Darray[J]);
halt;

end
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else Mspecs[J-2] := V;

end; end;

procedure getfile(FileSpec : string;
var MotorData : DataArray);

var

MotorNum

MotorQuan

MotorSpecs

I,J,Recnum

Dfile

Drecord

: ShString;

: integer;

: Attarray;

: integer;

: text;

: string;

begin

assign(Dfile, FileSpec); reset(Dfile);

Recnum := 0;

while not eof(Dfile) do

begin
Recnum := Recnum + i;

readln(Dfile,Drecord);

decode(Drecord, MotorNum, MotorQuan, MotorSpecs);

with MotorData[Recnum] do

begin

Mnum := MotorNum;

Mquan := MotorQuan;
for J := 1 to NumAtts do Mspecs[J] := MotorSpecs[J];

end;

end;

close(Dfile);

end;

function max(x,y:real):real;

begin

if x < y then max := y else max := x;

end;

function min(x,y:real);real;

begin

if x < y then min := x else min := y;

end;

function sigm_(Dmat : DisArray) : real;

{ tally excess functionality to cluster I and J )
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var

QNi,QNj,sg
I

Maxi,Cj

: real;

: integer;

: array[l..NumAtts] of real;

begin

sg := 0;
QNi := Dmat[l,Q];

QNj := Dmat[2,Q];

Cj[I] := 0.5;
Cj[2] := 2.8;

cj[3] := i0.0;

Cj[4] := 0.0;

cj[5] := 1.0;

(500 dollars per watt)

(2800 dollars per pound}
(I0,000 dollars per cubic foot}

for I := 1 to NumAtts do

Maxi[D] := max(Dmat[1,I],Dmat[2,I]);
(define mean attribute vector above}

for I:= 1 to NumAtts do

sg := sg + QNi*Cj[I]*(abs(Dmat[l,I] - Maxi[I]})

+ QNj*Cj[I]*(abs(Dmat[2,I] - Maxi[I]));

(sigma is increase in power requirement} sigma := sg;

end;

function alpha(Dmat : DisArray):real;

var

QNk,RD, Prod,LCS

I,QN,QNii,QNji

QNi, QNJ, LCSi, LCSj

: real;

: integer;
: real;

begin

QNi := Dmat[l,Q]; QNii := round(QNi);

QNJ :: Dmat[2,Q]; QNJi := round(QNj);

QNk := QNi + QNJ;

QN := QNii + QNJi;

RD := min(Dmat[l,4],Dmat[2,4]);
LCSi := 0.0;

for I := 1 to QNii do LCSi := LCSi + exp(LRN*ln(I));

LCSi := (QNi-LCSi}*Dmat[I,5];
(learning curve savings in alpha i)

:= o.o;
for I := 1 to QNji do LCSj := LCSj + exp(LRN*in(I));

LCSj := (QNj-LCSj)*Dmat[2,5];
(learning curve savings in alpha j}

Prod := max(Dmat[l,5],Dmat[2,5]);
LCS :_ 0.0;

for I := 1 to QN do LCS := LCS + exp(LRN*ln(I));

alpha := -(RD + Prod*(QNk - LCS) - LCSi - LCSj);
(fl(N,S) is linear in N}

end;
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function alphastar(Partl,Part2:Partition; Smat:SimMatrix;

N;integer):real;

var

QNk,RD,Prod,LCS

a,QN,QNii,QNji,J

QNi, QNj, LCSi, LCSj

Max,Min

: real;

: integer;

: real;

: real;

begin for I := 2 to NumItems do

begin

if Partl[l] > 0 then if Partl[I] > 0 then

cluster(Smat,Partl[l],Partl[I]);

if Part2[l] > 0 then if Part2[I] > 0 then

cluster(Smat,Part2[l],Part2[I]);

end; Max := 0.0; Min := 1.0E35; for I := 1 to NumItems

do if Smat[I,0] = Partl[l] then

begin

if Smat[I,4] > Max then Max := Smat[I,4];

if Smat[I,4] < Min then Min := Smat[I,4];

end; RD := Max - Min; QNk := Smat[Partl[l],Q] +

Smat[Part2[l],Q];

QN := round(QNk);

Max := 0.0;

for I := 1 to NumItems do if Smat[I,0] = Partl[l] then

if Smat[I,5] > Max then Max := Smat[I,5];

LCSi := 0.0;

for I := 1 to QN do Lcsi := Lcsi + exp(LRN*in(I));

Lcsi := (QNk-LCSi)*Max;

{max possible learning curve savings in switch}

Min := 1.0E35;

for I := 1 to NumItems do if Smat[I,0] = Partl[l] then

begin

{min possible learning curve savings left in cluster}

QNi := Smat[I,Q]; QNii := round(QNi);

LCSj ;= 0.0;
for J := 1 to QNii do LSCj := LCSj + exp(LRN*in(j));

LCSj := (QNi-LCSj)*Smat[I,5];

if LCSj < Min then Min := Lcsj;

end;

Prod := Max - Min;

QNi := Smat[Partl[l],0];

QNii := round(QNi);

LCSi := 0.0;

for I := 1 to QNii do LCSi := LCSi + exp(LRN*in(I));

Lcsi := (QNi-LCSi)*Smat[Partl[l],5];
(learning curve savings in alpha i}

QNj := Smat[Part2[l],0];

QNji := round(QNj);

LCSj := 0.0;

for I := 1 to QNji do LCSj := LCSj + exp(LRN*in(I));
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LcsJ := (QNj-LCSj)*Smat[Part2[l],5];
(learning curve savings in alpha j)

Prod :z Prod - LCSi - LCSj;

(subtract original learning curve savings)

alphastar := RD + Prod;
end;

function objective_function(Alf,Sig:real):real;

begin

objective_function := Alf + Sig;
end;

function Distance(Dmat : DisArray) : real;

(assesses the inter-cluster distance between clusters I and

J)

var

Unique,Common,Alf,Sig : real;

begin

Unique := objective_function(Dmat[l,f],Dmat[l,S])

+ objective_function(Dmat[2,f],Dmat[2,S]);
Alf := alpha(Dmat) + Dmat[l,f] + Dmat[2,f];

Sig := sigma(Dmat) + Dmat[l,S] + Dmat[2,S];

Common := objective_function(Alf,Sig);

Distance := Common - Unique;
end;

procedure cluster(var Smat:SimilarityMatrix; Mk,Mi:integer);

(determines common motor specs of clusters I and J, then

removes row J from the similarity matrix by marking element
0 with I of row J and all members of cluster J)

var

I,J,II : integer;

Sij,Aij : real;

Dmat : DisArray;

begin
I := Mk; J := Mi;
for II := 1 to NumAtts+3 do

begin

Dmat[l,II] := Smat[I,II];

Dmat[2,II] := Smat[J,II];

end; Sij := sigma(Dmat); (assess excess functionality)

Smat[I,S] := Smat[I,S] + Smat[J,S] + Sij;

(sigma is cumulative)

Aij := alpha(Dmat);
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Smat[I,f] := Smat[I,f] + Smat[J,f] + Aij;
(alpha is cumulative)

Smat[J,0] := I;
( mark element 0 of row J, thus removing it )

for II := i to NumItems do if Smat[II,0] =J then

Smat[II,O] := I; ( mark members of J, now I )

Smat[I,Q] := Smat[I,Q] + Smat[J,Q];
( total # of motors in cluster I )

for II := 1 to NumAtts do

Smat[I,II] := max(Smat[I,II],Smat[J,II])(common spec set)

end;

function Scost(Pmat : PartitionMatrix;

Smat : similarityMatrix;

Mdat : DataArray):real;

var

I,J,N,C : integer;

Ccost,Netcost : real;

begin
NetCost := 0.0;

C := 0; for
J := 1 to NumItems do if Pmat[J,l] > 0 then

begin
C := C + I;

N := Pmat[J,l];
for I := 2 to NumItems do if Pmat[J,I] > 0 then

cluster(Smat,N,Pmat[J,I]);

Ccost := Smat[N,f] + Smat[N,S];
(alpha and sigma calculated in cluster)

NetCost := NetCost + Ccost;

end;

Scost := NetCost + 4057.68;

end;

function Scost_w_output(Pmat : PartitionMatrix;
Smat : SimilarityMatrix;

Mdat : DataArray):real;

var

I,J,N,C : integer;

Ccost,Ntcost : real;

begin

NtCost := 0.0;

C := O;
for J := 1 to NumItems do if Pmat[J,l] > 0 then
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begin
C := C + i;

N := Pmat[J,l];

for I := 2 to NumItems do if Pmat[J,I] > 0 then
cluster(Smat,N,Pmat[J,I]);

Ccost := Smat[N,f] + Smat[N,S];

{alpha and sigma calculated in cluster)
writeln('Cluster ',C:2,' cost = ',Ccost:l:2);
writeln;

NtCost := NtCost + Ccost;
end;

Scost w output := NtCost + 4057.68;
end;

procedure find(Pmat : PartitionMatrix; P,R : integer;

var I,J : integer);

begin
J := 0; I := R;

if R = 0 then

begin
I := I;

repeat
J := J + I;

if Pmat[I,J] = 0 then

begin

I := I + i;

J := i;

end;

if Pmat[I,l] = 0 then

begin

( search for P over entire matrix )

( search for first 0 in row R )

writeln('No match in partition array.'

,' Pmat[',I,':',J,']');
halt;

end;

until Pmat[I,J] = P;
end else

repeat

J := J + i;
if J > Numltems then

begin

writeln('No match in partition array 2');
halt;

end;

until Pmat[I,J] = P;
end;
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procedure display(Pmat : PartitionMatrix;

Smat : similarityMatrix;

Cost : real);

var

I,J,C, II

Sfile

Ofile

Part

: integer;

: text;

: file of Partition;

: Partition;

begin

assign(Ofile,'swsol.dat') ; rewrite(Ofile) ;

for I := 1 to NumItems do

begin

for J := 1 to NumItems do Part. PartArray[J] := Pmat[I,J];

write(Ofile,Part) ; {save optimum partition matrix)

end;

close (Ofile) ;

assign(Sfile, 'optsol.dat') ; rewrite(Sfile) ;

for J := 1 to NumItems do if Pmat[J,l] > 0 then

begin

II := Pmat[J,l];

for I := 2 to NumItems do if Pmat[J,I] > 0 then

cluster (Smat, II, Pmat [J, I] ) ;

end;

writeln(Sfile,'** FINAL SOLUTION **');

writeln (Sfile) ;

C := 0;

for I := 1 to NumItems do if Smat[I,0] = 0 then C := C + i;

writeln(Sfile,'Solution composed of ' C,' groups 'I " I

' Net cost impact is ',Cost:10:2,'.') ;

writeln (Sfile) ;

C := i;

for I := 1 to NumItems do if Smat[I,0] = 0 then

begin

write(Sfile,'Group ',C,' members: ') ;

write(Sfile,I,' ') ;

for J := 1 to NumItems do if Smat[J,0] = I then

write(Sfile,J,' ') ;

writeln (Sfile) ;

write(Sfile,'Common specs < ') ;

• , ,);for J := 1 to NumAtts do write(Sfile,Smat[I,J]:8.2,

writeln(Sfile, '>') ;

• ' motors in cluster') ;writeln(Sfile, Smat [I,Q] :8.2,

C := C + I;

writeln(Sfile) ; writeln(Sfile) ;

end;

close(Sfile) ;

end;
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BEGIN
Q := NumAtts + i;

S := NumAtts + 2;

f := NumAtts + 3;

LRN := In(LC)*I.4427; {learning curve exponent=in(LC)/in(2))

. getfile('motorcd.dat',MotorData);

assign(Pfile,'hiersol.dat'); reset(PFile);

{for I := 1 to NumItems do with MotorData[I] do

begin

write(Mnum,' ',Mquan,' < ');

for J := 1 to NumAtts do write(Mspecs[J]:8:3);

write(' >');

chary := readkey; writeln;

end;} for I := 1 to NumItems do

begin

for J := 1 to NumAtts do

SimMatrix[I,J] := MotorData[I].Mspecs[J];

SimMatrix[I,Q] := MotorData[I].Mquan;

{number of Motors per cluster)

SimMatrix[I,0] := 0.0;

{no motor is a member of another cluster)

SimMatrix[I,S] := 0.0;

{sigma is zero per cluster initially)

SimMatrix[I,f] := 0.0;

{alpha is zero per cluster initially}

end; NetCost := 0.0; Cost := 0.0; writeln; for I := 1 to

NumItems do for J := I to NumItems do

Pmat[I,J] := 0;

for J := 1 to NumItems do if not eof(Pfile) then

begin

for I := 1 to NumItems do Part. PartArray[I] := 0;

read(Pfile,Part);

for I := 1 to NumItems do Pmat[J,I] := Part.PartArray[I];

end; NetCost := Scost_w_output(Pmat,SimMatrix,MotorData);

writeln;

writeln('Total cost is ',NetCost:l:2);

write('any key to continue =>'); charv := readkey; writeln;

close(Pfile};

repeat

NumChanges := 0;

for I := 1 to NumItems do for J := 1 to NumItems do

MinMat[I,J] := Pmat[I,J];
for P := I to NumItems do

begin

find(MinMat,P,0,NumClus,NumMotor);

find(MinMat,0,NumClus,L,M);

MinMat[NumClus,NumMotor] := MinMat[NumClus,M-l];

MinMat[NumClus,M-l] := 0;

for II := 1 to NumItems do {cluster number = II)

if MinMat[II,l] > 0 then
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begin
find(MinMat,0,II,I,J); {first zero in row II}
MinMat[I,J] := P; make that element motor P)
MinCost := Scost(MinMat,SimMatrix,MotorData);
if MinCost < NetCost then

begin (save new lower cost partition}
for L := 1 to NumItems do

for M:=I to NumItems do
Pmat[L,M]:=MinMat[L,M];

NetCost := MinCost;
NumChanges := NumChanges + i;
end;

MinMat[I,J] := 0;
end;

find(MinMat,0,NumClus,L,M); {reset matrix)
MinMat[NumClus,M] := MinMat[NumClus,NumMotor];
MinMat[NumClus,NumMotor] := P;
end;

writeln('Pass complete. ',NumChanges,' change(s) made.');
writeln;
until NumChanges = O;
Display(Pmat,SimMatrix,NetCost);
END.
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D. Hierarchical Clustering Output

Join cluster 17 to cluster 16 at a distance of -138.87

Common specs < 510.000 5.865 0.068 118.290 56.210 >

6 motors In cluster

Net cost impact (cumulative) = 3918.81

Join cluster 14 to cluster 13 at a distance of -85.62

Common specs < 300.000 4.200 0.049 94.840 45.070 >

6 motors In cluster

Net cost Impact (cumulative) = 3833.18

Join cluster 9 to cluster 8 at a distance of

specs < 32 000 1.408 0.016 46.020

12 motors in cluster

Net cost impact (cumulative) = 3774.63

-58.55 Common

21.870 >

Join cluster 23 to cluster 22 at a distance of -50.58

Common specs < 67.000 0.858 0.010 33.160 15.760 >

30 motors In cluster

Net cost impact (cumulative) = 3724.05

Join cluster 15 to cluster ii at a distance of -49.27

Common specs < 350.000 5.880 0.068 118.490 56.310 >

6 motors In cluster

Net cost Impact (cumulative) = 3674.78

Join cluster 27 to cluster 18 at a distance of -47.41

Common specs < 200.000 1.800 0.021 54.140 25.730 >

8 motors _n cluster

Net cost Impact (cumulative) = 3627.37

Join cluster 21 to cluster 20 at a distance of -39.52

Common specs < 80.000 0.869 0.010 33.440 15.890 >

12 motors In cluster

Net cost Impact (cumulative) = 3587.85

Join cluster 8 to cluster 7 at a distance of -36.90

Common specs < 32.000 1.408 0.016 46.020 21.870 >

14 motors in cluster

Net cost impact (cumulative) = 3550.94

Join cluster 4 to cluster 2 at a distance of -30.04

Common specs < 6.800 0.554 0.006 24.830 11.800 >
8 motors in cluster

Net cost impact (cumulative) = 3520.90

Join cluster 26 to cluster 24 at a distance of -28.60

Common specs < 13.000 0.425 0.005 20.840 9.900 >

44 motors in cluster

Net cost Impact (cumulative) = 3492.30
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Join cluster 25 to cluster 24 at a distance of -28.88

Common specs < 13.000 0.425 0.005 20.840 9.900 >
46 motors In cluster

Net cost Impact (cumulative) = 3463.42

Join cluster 6 to cluster 2 at a distance of -25.64

Common specs < i0.000 0.600 0.007 26.170 12.440 >
16 motors In cluster

Net cost impact (cumulative) = 3437.78

Join cluster 5 to cluster 2 at a distance of -20.44

Common specs < I0.000 0.679 0.008 28.410 13.500 >
18 motors in cluster

Net cost impact (cumulative) = 3417.34

Join cluster 24 to cluster 1 at a distance of 16.48

Common specs < 13.000 0.425 0.005 20.840 9.900 >

58 motors in cluster

Net cost impact (cumulative) = 3433.82

Join cluster 3 to cluster 2 at a distance of 19.31

Common specs < i0.000 0.679 0.008 28.410 13.500 >

40 motors in cluster

Net cost impact (cumulative) = 3453.13

Join cluster 20 to cluster 19 at a distance of

Common specs < 98.000 0.960 0.011 35.720

16 motors In cluster

Net cost impact (cumulative) = 3519.36

66.23

16.980 >

Join cluster 13 to cluster ii at a distance of

Common specs < 350.000 5.880 0.068 118.490
12 motors in cluster

Net cost impact (cumulative) = 3592.85

73.49

56.310 >

Join cluster 2 to cluster 1 at a distance of 90.80

Common specs < 13.000 0.679 0.008 28.410 13.500 >

98 motors in cluster

Net cost impact (cumulative) = 3683.65

Join cluster 19 to cluster i0 at a distance of 202.92

Common specs < 98.000 2.448 0.028 66.360 31.530 >

20 motors in cluster

Net cost impact (cumulative) = 3886.57

Join cluster 18 to cluster 12 at a distance of 214.16

Common specs < 250.000 3.500 0.041 84.060 39.950 >

15 motors in cluster

Net cost impact (cumulative) = 4100.73
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Join cluster 22 to cluster 7 at a distance of 291.31
Common specs < 67.000 1.408 0.016 46.020 21.870 >

44 motors In cluster
Net cost impact (cumulative) = 4392.04

Join cluster 16 to cluster ii at a distance of 756.44
Common specs < 510.000 5.880 0.068 118.490 56.310 >

18 motors In cluster
Net cost impact (cumulative) = 5148.48

Join cluster I0 to cluster 7 at a distance of 848.72
Common specs < 98.000 2.448 0.028 66.360 31.530 >

64 motors in cluster
Net cost Impact (cumulative) = 5997.20

Join cluster 12 to cluster II at a distance of 1971.09

Common specs < 510.000 5.880 0.068 118.490 56.310 >
33 mot-ors In cluster

Net cost Impact (cumulative) = 7968.30

Join cluster 7 to cluster 1 at a distance of 5088.84

Common specs < 98.000 2.448 0.028 66.360 31.530 >

162 motors In cluster

Net cost impact (cumulative) = 13057.13

Join cluster ii to cluster 1 at a distance of 36015.72

Common specs < 510.000 5.880 0.068 118.490 56.310 >
195 motors in cluster

Net cost Impact (cumulative) = 49072.85
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** HIERARCHICAL SOLUTION **

Solution composed of 14 groups.

Group 1 members: 1
Common specs < 3.50

12.00 motors in cluster

Net cost impact is 3417.34

0.35 0.00 18.32 8.71 >

Group 2 members: 2 4 5 6

Common specs < I0.00

18.00 motors in cluster

0.68 0.01 28.41 13.50 >

Group 3 members: 3

Common specs < 6.50
22.00 motors in cluster

0.01 0.00 26.80 12.73 >

Group 4 members: 7 8 9

Common specs < 32.00
14.00 motors In cluster

1.41 0.02 46.02 21.87 >

Group 5 members: I0

Common specs < 68.00
4.00 motors in cluster

2.45 0.03 66.36 31.53 >

Group 6 members: ii 15

Common specs < 350.00
6.00 motors in cluster

5.88 0.07 118.49 56.31 >

Group 7 members: 12

Common specs < 250.00

7.00 motors in cluster

3.50 0.04 84.06 39.95 >

Group 8 members: 13 14

Common specs < 300.00
6.00 motors In cluster

4.20 0.05 94.84 45.07 >

Group 9 members: 16 17

Common specs < 510.00
6.00 motors in cluster

5.86 0.07 118.29 56.21 >
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Group I0 members: 18 27

Common specs < 200.00
8.00 motors in cluster

1.80 0.02 54 • 14 25.73 >

Group ii members: 19

Common specs < 98.00
4.00 motors in cluster

0.96 0.01 35.72 16.98 >

Group 12 members: 20 21

Common specs < 80.00

12.00 motors in cluster

0.87 0.01 33.44 15.89 >

Group 13 members: 22 23

Common specs < 67.00
30.00 motors in cluster

0.86 0.01 33.16 15.76 >

Group 14 members: 24 25 26

Common specs < 13.00

46.00 motors in cluster

0.42 0.01 20.84 9.90 >
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E. Switching Program Output

** FINAL SOLUTION **

Solution composed of 14 groups.

Group 1 members: 1

Common specs < 3.50 0.35
12.00 motors In cluster

Net cost impact is 3417.34.

0.00 18.32 8.71 >

Group 2 members: 2 4 5 6

Common specs < 10.00

18.00 motors In cluster

0.68 0.01 28.41 13.50 >

Group 3 members: 3

Common specs < 6.50
22.00 motors in cluster

0.01 0.00 26.80 12.73 >

Group 4 members: 7 8 9

Common specs < 32.00
14.00 motors in cluster

1.41 0.02 46.02 21.87 >

Group 5 members: i0

Common specs < 68.00
4.00 motors In cluster

2.45 0.03 66.36 31.53 >

Group 6 members: ii 15

Common specs < 350.00

6.00 motors in cluster

5.88 0.07 118.49 56.31 >

Group 7 members: 12

Common specs < 250.00
7.00 motors in cluster

3.50 0.04 84.06 39.95 >

Group 8 members: 13 14

Common specs < 300.00

6.00 motors in cluster

4.20 0.05 94.84 45.07 >

Group 9 members: 16 17

Common specs < 510.00
6.00 motors in cluster

5.86 0.07 118.29 56.21 >
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Group I0 members: 18 27

Common specs < 200.00
8.00 motors in cluster

1.80 0.02 54.14 25.73 >

Group ii members: 19

Common specs < 98.00
4.00 motors in cluster

0.96 0.01 35.72 16.98 >

Group 12 members: 20 21
Common specs < 80.00

12.00 motors in cluster

0.87 0.01 33.44 15.89 >

Group 13 members: 22 23

Common specs < 67.00
30.00 motors in cluster

0.86 0.01 33.16 15.76 >

Group 14 members: 24 25 26

Common specs < 13.00
46.00 motors in cluster

0.42 0.00 20.84 9.90 >
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APPENDIX C. APPLICATION OF SUFFICIENCY CONDITIONS TO PHASE
C/D COMMONALITY ANALYSIS CLUSTERING SOLUTION

Employing the sufficiency condition of equation (13) for Z-minimal partitions, a
total of 91 inequalities may be defined for the 14 clusters given in Table 18 as follows:

.

•

•

o I + a 2 + Maximum{u*(1),a*(2) ) < Minimum{6(u,v) },

u=-l, v=2,4,5,6

u I + a 3 + Maximum{u*(1),a*(3)} S Minimum(6(u,v)},

u=l, v=3

U 1 + a 7 + Maximum{a*(1),a*(7) } S Minimum{6(u,v)),

u=l, v=7,8,9

14. a 2 + a 3 + Maximum{a*(2),u*(3)} S Minimum{6(u,v)),
u=2,4,5,6, v=3

15. 02 + a7 + Maximum{u*(2),a*(7)) S Minimum{6(u,v)},

u=2,4,5,6, v=7,8,9

16. 02 + alO + Maximum{a*(2),u*(lO)} S Minimum{6(u,v)},
u=2,4,5,6, v=lO

91. a22 + 024 + Maximum(a*(22),a*(24)} _ Minimum{6(u,v)},

U=22,23, _24,25,26

Consider inequality number 1. With o 1 = 0, a2 = 44.8, a*(1) = 0, and a*(2) = 55.2,

the minimum 6(u,v) is 6(1,4) = 56.4. Since 44.8 + 55.2 > 56.4, this inequality does
not hold, and the minimum partition of {1,2,4,5,6} into two groups must be deter-
mined by complete enumeration if all other inequalities hold. However, now consider

that inequalities number 13 and 25 also do not hold; inequality number 13 concerns

clusters 1 and 24 while inequality number 25 concerns clusters 2 and 24. Thus, the
minimum partition of {1,2,4,5,6,24,25,26} into three groups must be determined by
complete enumeration if all other inequalities hold.

Of the first 25 inequalities, inequalities number i, 13, 14, 15, 17, 19, 23, 24,

and 25 do not hold. Thus, the optimal partition of {1,2,3,4,5,6,7,8,9,11,13,14,15,
20,21,22,23,24,25} into 9 groups must be determined by enumeration. The number of

partitions of 19 objects into 9 groups is greater than 1.14 x I012. Thus, although

PI_ECEt_;;'4G PAGE ELA_".;K NOT F_t.,'vlED
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the validity of inequality number 2 serves to reduce the solution space by almost

10103.0 x partitions, the impact is negligible.

While the remainder of inequalities numbered 1 through 25 hold to reduce the
number of partitions which must be examined in some measure, inequalities numbered

26 through 91 have yet to be examined. Thus, at this point it is intuitive that the
partition of Table 18 cannot be verified as Z-minimal employing the sufficiency condi-
tions in a manual branch-and-bound manner. A computer program would be required
to determine the number of partitions remaining after all inequalities were examined,
thus establishing whether enumeration of partitions is feasible.
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